Sign up & Download
Sign in

Modeling the radiative effects of desert dust on weather and regional climate

by C. Spyrou, G. Kallos, C. Mitsakou, P. Athanasiadis, C. Kalogeri, M. J. Iacono
Atmospheric Chemistry and Physics ()


Mineral dust aerosols exert a significant effect on both solar and terrestrial radiation. By absorbing and scattering, the solar radiation aerosols reduce the amount of energy reaching the surface. In addition, aerosols enhance the greenhouse effect by absorbing and emitting outgoing longwave radiation. Desert dust forcing exhibits large regional and temporal variability due to its short lifetime and diverse optical properties, further complicating the quantification of the direct radiative effect (DRE). The complexity of the links and feedbacks of dust on radiative transfer indicate the need for an integrated approach in order to examine these impacts. In order to examine these feedbacks, the SKIRON limited area model has been upgraded to include the RRTMG (Rapid Radiative Transfer Model – GCM) radiative transfer model that takes into consideration the aerosol radiative effects. It was run for a 6 year period. Two sets of simulations were performed, one without the effects of dust and the other including the radiative feedback. The results were first evaluated using aerosol optical depth data to examine the capabilities of the system in describing the desert dust cycle. Then the aerosol feedback on radiative transfer was quantified and the links between dust and radiation were studied. The study has revealed a strong interaction between dust particles and solar and terrestrial radiation, with several implications on the energy budget of the atmosphere. A profound effect is the increased absorption (in the shortwave and longwave) in the lower troposphere and the induced modifi- cation of the atmospheric temperature profile. These feedbacks depend strongly on the spatial distribution of dust and have more profound effects where the number of particles is greater, such as near their source.

Cite this document (BETA)

Readership Statistics

20 Readers on Mendeley
by Discipline
by Academic Status
30% Ph.D. Student
20% Assistant Professor
15% Researcher (at a non-Academic Institution)
by Country
5% India
5% Ukraine
5% China

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in