Sign up & Download
Sign in

Pathwise coordinate optimization

by Jerome Friedman, Trevor Hastie, Holger Höfling, Robert Tibshirani
The Annals of Applied Statistics ()


For obtaining causal inferences that are objective, and therefore have the best chance of revealing scientific truths, carefully designed and executed randomized experiments are generally considered to be the gold standard. Observational studies, in contrast, are generally fraught with problems that compromise any claim for objectivity of the resulting causal inferences. The thesis here is that observational studies have to be carefully designed to approximate randomized experiments, in particular, without examining any final outcome data. Often a candidate data set will have to be rejected as inadequate because of lack of data on key covariates, or because of lack of overlap in the distributions of key covariates between treatment and control groups, often revealed by careful propensity score analyses. Sometimes the template for the approximating randomized experiment will have to be altered, and the use of principal stratification can be helpful in doing this. These issues are discussed and illustrated using the framework of potential outcomes to define causal effects, which greatly clarifies critical issues.

Cite this document (BETA)

Readership Statistics

372 Readers on Mendeley
by Discipline
by Academic Status
46% Ph.D. Student
10% Post Doc
9% Student (Master)
by Country
10% United States
2% China
1% Japan

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in