Skip to content

Psychosis genetics: modeling the relationship between schizophrenia, bipolar disorder, and mixed (or "schizoaffective") psychoses

by 148–155. http://doi.org/citeulike-article-id:3687170 doi: 10.1016/j.schres.2007.04.023 Gold, J. M., Fuller, R. L., Robinson, B. M., Braun, E. L., & Luck, S. J. (2007). Impaired top-down control of visual search in schizophrenia. Schizophr Res, 94(1-3), 590–601. http://doi.org/10.1016/j.neuroimage.2009.04.062 Daunizeau, J., Kiebel, S. J., & Friston, K. J. (2009). Dynamic causal modelling of distributed electromagnetic responses. Neuroimage, 47(2), <NMDA Hypofunction model of Schizophrenia_Olney.pdf>. (n.d.)., 311–317. http://doi.org/10.1038/335311a0 Zeki, S., & Shipp, S. (1988). The functional logic of cortical connections. Nature, 335(6188), 55–65. http://doi.org/10.1016/j.schres.2004.10.011 Kim, D., Zemon, V., Saperstein, A., Butler, P. D., & Javitt, D. C. (2005). Dysfunction of early-stage visual processing in schizophrenia: harmonic analysis. Schizophr Res, 76(1), 2322–2329. http://doi.org/10.1016/j.neuroimage.2011.09.025 Lohmann, G., Erfurth, K., Muller, K., & Turner, R. (2012). Critical comments on dynamic causal modelling. Neuroimage, 59(3), 1610–1624. Tootell, R. B., Silverman, M. S., Hamilton, S. L., Switkes, E., & De Valois, R. L. (1988). Functional anatomy of macaque striate cortex. V. Spatial frequency. J Neurosci, 8(5), A. P. (1995). Statistical Parametric Maps in Functional Imaging. Friston, K. J., & Holmes, 1442–1451. http://doi.org/10.1016/j.clinph.2004.01.019 Fuchs, M., Wagner, M., & Kastner, J. (2004). Confidence limits of dipole source reconstruction results. Clin Neurophysiol, 115(6), 121–136. http://doi.org/10.1007/s11571-008-9038-0 Kiebel, S. J., Garrido, M. I., Moran, R. J., & Friston, K. J. (2008). Dynamic causal modelling for EEG and MEG. Cogn Neurodyn, 2(2), <SPM_manual_Imp.pdf>. (n.d.)., 13. http://doi.org/10.1186/1741-7015-2-13 McGrath, J., Saha, S., Welham, J., El Saadi, O., MacCauley, C., & Chant, D. (2004). A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med, 2, 6. http://doi.org/10.3389/fpsyg.2015.00041 Silverstein, S., Keane, B. P., Blake, R., Giersch, A., Green, M., & Kéri, S. (2015). Vision in Schizophrenia: Why it Matters. Front Psychol, 7492–7500. http://doi.org/10.1523/JNEUROSCI.1852-08.2008 Martinez, A., Hillyard, S. A., Dias, E. C., Hagler Jr., D. J., Butler, P. D., Guilfoyle, D. N., … Javitt, D. C. (2008). Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. J Neurosci, 28(30), 67–99. http://doi.org/http://dx.doi.org/10.1016/j.cognition.2003.10.011 Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 2923–2933. http://doi.org/10.1016/j.visres.2007.07.016 Skottun, B. C., & Skoyles, J. R. (2007). Contrast sensitivity and magnocellular functioning in schizophrenia. Vision Res, 47(23), 19–76. Meltzer, H. Y., & Stahl, S. M. (1976). The dopamine hypothesis of schizophrenia: a review. Schizophr Bull, 2(1), 256–264. http://doi.org/10.1016/j.schres.2007.09.037 Lalor, E. C., Yeap, S., Reilly, R. B., Pearlmutter, B. A., & Foxe, J. J. (2008). Dissecting the cellular contributions to early visual sensory processing deficits in schizophrenia using the VESPA evoked response. Schizophr Res, 98(1-3), 334–341. http://doi.org/10.1176/appi.ajp.2012.12040490 Lee, J., Altshuler, L., Glahn, D. C., Miklowitz, D. J., Ochsner, K., & Green, M. F. (2013). Social and nonsocial cognition in bipolar disorder and schizophrenia: relative levels of impairment. Am J Psychiatry, 170(3), 191–199. http://doi.org/10.1007/s00221-012-3129-1 Murphy, J. W., Kelly, S. P., Foxe, J. J., & Lalor, E. C. (2012). Isolating early cortical generators of visual-evoked activity: a systems identification approach. Exp Brain Res, 220(2), 4695. http://doi.org/doi::10.4249/scholarpedia.4695 Sporns, O. (2007). Brain connectivity. Scholarpedia, 2, 218–229. http://doi.org/http://dx.doi.org/10.1006/nimg.1997.0291 Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and Modulatory Interactions in Neuroimaging. Neuroimage, 6(3), 929–934. Li, C. S. (2002). Impaired detection of visual motion in schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry, 26(5), International Statistical Classification of Diseases and Related Health Problems 10th Revision. (n.d.). Retrieved from Http://apps.who.int/classifications/icd10/browse/2010/en, 417–430. http://doi.org/10.1093/brain/awl233 Butler, P. D., Martinez, A., Foxe, J. J., Kim, D., Zemon, V., Silipo, G., … Javitt, D. C. (2007). Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain, 130(Pt 2), 24–37. http://doi.org/10.1016/j.schres.2009.01.016 Allen, A. J., Griss, M. E., Folley, B. S., Hawkins, K. A., & Pearlson, G. D. (2009). Endophenotypes in schizophrenia: a selective review. Schizophr Res, 109(1-3), 774–785. http://doi.org/http://dx.doi.org/10.1016/j.neuropsychologia.2007.10.005 Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46(3), 1011–1020. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12418934 Doniger, G. M., Foxe, J. J., Murray, M. M., Higgins, B. A., & Javitt, D. C. (2002). Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Arch Gen Psychiatry, 59(11), 200–205. Matthysse, S. (1973). Antipsychotic drug actions: a clue to the neuropathology of schizophrenia? Fed Proc, 32(2), 305–316. http://doi.org/10.1007/s00406-008-0802-2 Yeap, S., Kelly, S. P., Sehatpour, P., Magno, E., Garavan, H., Thakore, J. H., & Foxe, J. J. (2008). Visual sensory processing deficits in Schizophrenia and their relationship to disease state. Eur Arch Psychiatry Clin Neurosci, 258(5), 13–36. http://doi.org/10.1089/brain.2011.0008 Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connect, 1(1), ii16–22. http://doi.org/10.1136/jnnp.2005.068130 Walsh, P., Kane, N., & Butler, S. (2005). The clinical role of evoked potentials. J Neurol Neurosurg Psychiatry, 76 Suppl 2, 220–234. http://doi.org/10.1016/j.neuroimage.2006.08.035 Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., & Penny, W. (2007). Variational free energy and the Laplace approximation. Neuroimage, 34(1), 929–934. Li, C. S. (2002). Impaired detection of visual motion in schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry, 26(5), 756–770. http://doi.org/10.1016/j.neuroimage.2004.12.030 David, O., Harrison, L., & Friston, K. J. (2005). Modelling event-related responses in the brain. Neuroimage, 25(3), 12–20. http://doi.org/10.1523/jneurosci.3405-11.2012 Deserno, L., Sterzer, P., Wustenberg, T., Heinz, A., & Schlagenhauf, F. (2012). Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia. J Neurosci, 32(1), O. (2010). Netwroks of the Brain. MIT Press. Sporns, 1835–1840. http://doi.org/10.1016/j.clinph.2009.08.014 Sarnthein, J., Andersson, M., Zimmermann, M. B., & Zumsteg, D. (2009). High test-retest reliability of checkerboard reversal visual evoked potentials (VEP) over 8 months. Clin Neurophysiol, 120(10), 1123–1131. http://doi.org/10.1001/archpsyc.64.10.1123 Saha, S., Chant, D., & McGrath, J. (2007). A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time? Arch Gen Psychiatry, 64(10), 17–24. http://doi.org/10.3969/j.issn.1672-7347.2010.01.003 Zhou, B., Tan, C., Tang, J., & Chen, X. (2010). Brain functional connectivity of functional magnetic resonance imaging of patients with early-onset schizophrenia. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 35(1), WHO. (1993). The ICD-10 Classification of Mental and Behavioural Disorders: Diagnostic Criteria for Research. Geneva: World Health Organization., 1–47. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1822724 Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1(1), 4. http://doi.org/10.3389/fnsys.2010.00142 Seghier, M. L., Zeidman, P., Neufeld, N. H., Leff, A. P., & Price, C. J. (2010). Identifying abnormal connectivity in patients using dynamic causal modeling of FMRI responses. Front Syst Neurosci, 519–525. http://doi.org/10.1016/j.schres.2013.08.023 Sun, L., Castellanos, N., Grutzner, C., Koethe, D., Rivolta, D., Wibral, M., … Uhlhaas, P. J. (2013). Evidence for dysregulated high-frequency oscillations during sensory processing in medication-naive, first episode schizophrenia. Schizophr Res, 150(2-3), 971–980. http://doi.org/10.1016/j.chb.2004.03.017 Kozma-Wiebe, P., Silverstein, S. M., Fehér, A., Kovács, I., Ulhaas, P., & Wilkniss, S. M. (2006). Development of a world-wide web based contour integration test. Computers in Human Behavior, 22(6), 65–79. Brigell, M., Kaufman, D. I., Bobak, P., & Beydoun, A. (1994). The pattern visual evoked potential. A multicenter study using standardized techniques. Doc Ophthalmol, 86(1), 9477–9487. http://doi.org/10.1523/jneurosci.0333-10.2010 Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., & Bullmore, E. (2010). Functional connectivity and brain networks in schizophrenia. J Neurosci, 30(28), e1000709. http://doi.org/10.1371/journal.pcbi.1000709 Penny, W. D., Stephan, K. E., Daunizeau, J., Rosa, M. J., Friston, K. J., Schofield, T. M., & Leff, A. P. (2010). Comparing families of dynamic causal models. PLoS Comput Biol, 6(3), 1152–1167. http://doi.org/10.1016/j.neuroimage.2007.01.031 Perfetti, B., Franciotti, R., Della Penna, S., Ferretti, A., Caulo, M., Romani, G. L., & Onofrj, M. (2007). Low- and high-frequency evoked responses following pattern reversal stimuli: a MEG study supported by fMRI constraint. Neuroimage, 35(3), 1255–1272. http://doi.org/10.1016/j.neuroimage.2005.10.045 David, O., Kiebel, S. J., Harrison, L. M., Mattout, J., Kilner, J. M., & Friston, K. J. (2006). Dynamic causal modeling of evoked responses in EEG and MEG. Neuroimage, 30(4), 871–882. Buchel, C., & Friston, K. (2000). Assessing interactions among neuronal systems using functional neuroimaging. Neural Netw, 13(8-9), 509–527. http://doi.org/10.1093/schbul/sbn176 Stephan, K. E., Friston, K. J., & Frith, C. D. (2009). Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull, 35(3), 852961. http://doi.org/10.1155/2011/852961 Litvak, V., Mattout, J., Kiebel, S., Phillips, C., Henson, R., Kilner, J., … Friston, K. (2011). EEG and MEG data analysis in SPM8. Comput Intell Neurosci, 2011, 571–580. http://doi.org/10.1016/j.neuroimage.2007.03.014 Garrido, M. I., Kilner, J. M., Kiebel, S. J., Stephan, K. E., & Friston, K. J. (2007). Dynamic causal modelling of evoked potentials: a reproducibility study. Neuroimage, 36(3), 503–520. http://doi.org/10.1016/j.neuroimage.2004.02.013 Kiebel, S. J., & Friston, K. J. (2004). Statistical parametric mapping for event-related potentials (II): a hierarchical temporal model. Neuroimage, 22(2), 752–765. http://doi.org/10.1016/j.neuroimage.2009.12.068 Friston, K. J., & Dolan, R. J. (2010). Computational and dynamic models in neuroimaging. Neuroimage, 52(3), 1–14. http://doi.org/10.1093/epirev/mxn011 Eaton, W. W., Martins, S. S., Nestadt, G., Bienvenu, O. J., Clarke, D., & Alexandre, P. (2008). The burden of mental disorders. Epidemiol Rev, 30, 13–36. http://doi.org/10.1089/brain.2011.0008 Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connect, 1(1), 7407–7411. Spencer, K. M., Nestor, P. G., Niznikiewicz, M. A., Salisbury, D. F., Shenton, M. E., & McCarley, R. W. (2003). Abnormal neural synchrony in schizophrenia. J Neurosci, 23(19), 226–234. http://doi.org/10.1016/j.neuroscience.2012.05.067 Lalor, E. C., Kelly, S. P., & Foxe, J. J. (2012). Generation of the VESPA response to rapid contrast fluctuations is dominated by striate cortex: evidence from retinotopic mapping. Neuroscience, 218, 929–939. http://doi.org/10.1016/j.biopsych.2005.10.005 Stephan, K. E., Baldeweg, T., & Friston, K. J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry, 59(10), 172–178. http://doi.org/10.1016/j.conb.2012.11.010 Friston, K., Moran, R., & Seth, A. K. (2013). Analysing connectivity with Granger causality and dynamic causal modelling. Curr Opin Neurobiol, 23(2), D. (2013). Visually Evoked Potentials. Retrieved from http://webvision.med.utah.edu/book/electrophysiology/visually-evoked-potentials/ Creel, 9353–9360. http://doi.org/10.1523/JNEUROSCI.1897-04.2004 Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R., & Linden, D. E. (2004). Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging, 111–119. http://doi.org/10.1007/s10633-009-9195-4 Odom, J. V, Bach, M., Brigell, M., Holder, G. E., McCulloch, D. L., Tormene, A. P., & Vaegan. (2010). ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol, 120(1), 234–242. http://doi.org/10.1016/j.tins.2008.02.005 Lisman, J. E., Coyle, J. T., Green, R. W., Javitt, D. C., Benes, F. M., Heckers, S., & Grace, A. A. (2008). Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci, 31(5), 31. http://doi.org/10.3389/fncel.2013.00031 Snyder, M. A., & Gao, W. J. (2013). NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci, 7, Pascual-Marqui. (1999). Review of methods for solving the EEG inverse problem ., 148–156. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18836582 McGorry, P. D., Killackey, E., & Yung, A. (2008). Early intervention in psychosis: concepts, evidence and future directions. World Psychiatry, 7(3), Inc. Purves, D., LaMantia, A., Hall, W., Fitzpatrick, D., & Augustine, G. (2004). Neuroscience (3rd ed.). Sinaeur Associates, 549–562. http://doi.org/10.1093/schbul/sbp006 Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull, 35(3), 133–152. http://doi.org/10.1002/syn.890010203 Seeman, P. (1987). Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse, 1(2), 1273–1302. http://doi.org/10.1016/s1053-8119(03)00202-7 Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4), 66–71. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16946855 Friston, K. J. (2002). Dysfunctional connectivity in schizophrenia. World Psychiatry, 1(2), 4. http://doi.org/10.3389/fpsyt.2013.00164 Foxe, J. J., Yeap, S., & Leavitt, V. M. (2013). Brief monocular deprivation as an assay of short-term visual sensory plasticity in schizophrenia – “the binocular effect.” Frontiers in Psychiatry, 40–47. http://doi.org/10.1016/j.biopsych.2008.03.023 Butler, P. D., Silverstein, S. M., & Dakin, S. C. (2008). Visual perception and its impairment in schizophrenia. Biol Psychiatry, 64(1), <fnsys-06-00003.pdf>. (n.d.). http://doi.org/10.3389/fnsys.2012.00003 10.3389/fnsys.2010.00147 10.3389/fnsys.2010.00148 10.3389/fnsys.2010.00040 10.3389/fnsys.2010.00146 10.3389/fnsys.2011.00012 10.3389/fnsys.2010.00160 10.3389/fnsys.2010.00144 10.3389/fn 10.3389/fnsys.2010.00154, 16–29. http://doi.org/10.1016/j.neuroimage.2013.01.063 Dauvermann, M. R., Whalley, H. C., Romaniuk, L., Valton, V., Owens, D. G., Johnstone, E. C., … Moorhead, T. W. (2013). The application of nonlinear Dynamic Causal Modelling for fMRI in subjects at high genetic risk of schizophrenia. Neuroimage, 73, 818–827. http://doi.org/10.1176/appi.ajp.2010.09030338 Leitman, D. I., Sehatpour, P., Higgins, B. A., Foxe, J. J., Silipo, G., & Javitt, D. C. (2010). Sensory deficits and distributed hierarchical dysfunction in schizophrenia. Am J Psychiatry, 167(7), 387–401. http://doi.org/10.1016/j.neuroimage.2007.07.040 Stephan, K. E., Weiskopf, N., Drysdale, P. M., Robinson, P. A., & Friston, K. J. (2007). Comparing hemodynamic models with DCM. Neuroimage, 38(3), 614–624. http://doi.org/10.1016/j.clinph.2004.09.016 Krishnan, G. P., Vohs, J. L., Hetrick, W. P., Carroll, C. A., Shekhar, A., Bockbrader, M. A., & O’Donnell, B. F. (2005). Steady state visual evoked potential abnormalities in schizophrenia. Clin Neurophysiol, 116(3), 482–490. http://doi.org/10.1093/schbul/sbp020 Craddock, N., O’Donovan, M. C., & Owen, M. J. (2009). Psychosis genetics: modeling the relationship between schizophrenia, bipolar disorder, and mixed (or “schizoaffective”) psychoses. Schizophr Bull, 35(3), 1914–1927. http://doi.org/10.1093/cercor/bhi069 Foxe, J. J., Murray, M. M., & Javitt, D. C. (2005). Filling-in in schizophrenia: a high-density electrical mapping and source-analysis investigation of illusory contour processing. Cereb Cortex, 15(12), 97–113. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5146491 Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 154–163. http://doi.org/10.1016/j.neuroimage.2008.07.041 Fastenrath, M., Friston, K. J., & Kiebel, S. J. (2009). Dynamical causal modelling for M/EEG: spatial and temporal symmetry constraints. Neuroimage, 44(1), 132. http://doi.org/10.3389/fpsyg.2013.00132 Butler, P. D., Abeles, I. Y., Silverstein, S. M., Dias, E. C., Weiskopf, N. G., Calderone, D. J., & Sehatpour, P. (2013). An event-related potential examination of contour integration deficits in schizophrenia. Front Psychol, 4, 319–330. http://doi.org/10.1016/j.neuroimage.2011.07.039 Penny, W. D. (2012). Comparing dynamic causal models using AIC, BIC and free energy. Neuroimage, 59(1), 1181–1192. Winterer, G., Coppola, R., Egan, M. F., Goldberg, T. E., & Weinberger, D. R. (2003). Functional and effective frontotemporal connectivity and genetic risk for schizophrenia. Biol Psychiatry, 54(11), 1180–1186. http://doi.org/10.1016/j.neuroimage.2009.03.033 Dima, D., Roiser, J. P., Dietrich, D. E., Bonnemann, C., Lanfermann, H., Emrich, H. M., & Dillo, W. (2009). Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modelling. Neuroimage, 46(4), 75–86. http://doi.org/citeulike-article-id:5020586 Pascual-Marqui, R. (1999). Review of Methods for Solving the EEG Inverse Problem. International Journal of Bioelectromagnetism, 1, 204–212. http://doi.org/10.1016/j.schres.2014.06.011 Fogelson, N., Litvak, V., Peled, A., Fernandez-del-Olmo, M., & Friston, K. (2014). The functional anatomy of schizophrenia: A dynamic causal modeling study of predictive coding. Schizophr Res, 158(1-3), 1261–1275. http://doi.org/10.1016/j.neunet.2003.06.002 Kotter, R., & Stephan, K. E. (2003). Network participation indices: characterizing component roles for information processing in neural networks. Neural Netw, 16(9), 773–795. http://doi.org/10.2307/2291091 Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 997–1011. http://doi.org/10.1016/j.neuroimage.2004.10.030 Phillips, C., Mattout, J., Rugg, M. D., Maquet, P., & Friston, K. J. (2005). An empirical Bayesian solution to the source reconstruction problem in EEG. Neuroimage, 24(4), 1181–1192. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0006322303005328?showall=true Winterer, G., Coppola, R., Egan, M. F., Goldberg, T. E., & Weinberger, D. R. (2003). Functional and effective frontotemporal connectivity and genetic risk for schizophrenia. Biol Psychiatry, 54(11), 155–179. http://doi.org/10.1146/annurev.clinpsy.3.022806.091532 Hyman, S. E. (2010). The diagnosis of mental disorders: the problem of reification. Annu Rev Clin Psychol, 6, 67–76. http://doi.org/10.1093/epirev/mxn001 McGrath, J., Saha, S., Chant, D., & Welham, J. (2008). Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev, 30, 649–656. http://doi.org/10.1037/0894-4105.19.5.649 Keri, S., Kelemen, O., Janka, Z., & Benedek, G. (2005). Visual-perceptual dysfunctions are possible endophenotypes of schizophrenia: evidence from the psychophysical investigation of magnocellular and parvocellular pathways. Neuropsychology, 19(5), 262–273. http://doi.org/10.1016/j.jneumeth.2009.11.020 Seth, A. K. (2010). A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods, 186(2), 1240–1249. http://doi.org/10.1016/s1053-8119(03)00144-7 Friston, K. J., & Penny, W. (2003). Posterior probability maps and SPMs. Neuroimage, 19(3), 245–259. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10097460 Mosher, J. C., Leahy, R. M., & Lewis, P. S. (1999). EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng, 46(3), S. L. (2006). Granger Causality: Basic Theory and Application to Neuroscience. In Handbook of Time Series Analysis (pp. 437–460). Wiley-VCH Verlag GmbH & Co. KGaA. http://doi.org/10.1002/9783527609970.ch17 Ding, M., Chen, Y., & Bressler, 56–78. http://doi.org/10.1002/hbm.460020107 Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Hum Brain Mapp, 2(1-2), 5033–5037. Retrieved from http://www.pnas.org/content/91/11/5033.abstract Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences, 91(11), 1104–1120. http://doi.org/10.1016/j.neuroimage.2007.09.048 Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., … Mattout, J. (2008). Multiple sparse priors for the M/EEG inverse problem. Neuroimage, 39(3), 275–293. http://doi.org/10.1002/hbm.20327 Penny, W., Flandin, G., & Trujillo-Barreto, N. (2007). Bayesian comparison of spatially regularised general linear models. Hum Brain Mapp, 28(4), 563–576. http://doi.org/10.1177/1073858405280524 Linden, D. E. (2005). The p300: where in the brain is it produced and what does it tell us? Neuroscientist, 11(6), 375–382. Hashimoto, T., Kashii, S., Kikuchi, M., Honda, Y., Nagamine, T., & Shibasaki, H. (1999). Temporal profile of visual evoked responses to pattern-reversal stimulation analyzed with a whole-head magnetometer. Exp Brain Res, 125(3), 824–832. http://doi.org/10.1016/j.neuroimage.2009.12.086 Dima, D., Dietrich, D. E., Dillo, W., & Emrich, H. M. (2010). Impaired top-down processes in schizophrenia: a DCM study of ERPs. Neuroimage, 52(3), 1004–1017. http://doi.org/10.1016/j.neuroimage.2009.03.025 Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model selection for group studies. Neuroimage, 46(4), 268–277. http://doi.org/10.1038/npp.2014.184 Moran, R. J., Jones, M. W., Blockeel, A. J., Adams, R. A., Stephan, K. E., & Friston, K. J. (2015). Losing Control Under Ketamine: Suppressed Cortico-Hippocampal Drive Following Acute Ketamine in Rats. Neuropsychopharmacology, 40(2), 1346–1355. http://doi.org/10.1016/s1053-8119(03)00443-9 Neumann, J., & Lohmann, G. (2003). Bayesian second-level analysis of functional magnetic resonance images. Neuroimage, 20(2), No Title. (n.d.). Retrieved from Dsm.psychiatryonline.org, 145–157. http://doi.org/10.1007/s004220000235 Kamiński, M., Ding, M., Truccolo, W. A., & Bressler, S. L. (2001). Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biological Cybernetics, 85(2), 2204–2215. http://doi.org/10.1016/j.clinph.2005.06.013 Schechter, I., Butler, P. D., Zemon, V. M., Revheim, N., Saperstein, A. M., Jalbrzikowski, M., … Javitt, D. C. (2005). Impairments in generation of early-stage transient visual evoked potentials to magno- and parvocellular-selective stimuli in schizophren, 2629–2636. http://doi.org/10.1093/cercor/bhn022 Kelly, S. P., Gomez-Ramirez, M., & Foxe, J. J. (2008). Spatial attention modulates initial afferent activity in human primary visual cortex. Cereb Cortex, 18(11), 357–366. http://doi.org/10.1007/BF00199471 Jansen, B., & Rit, V. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics, 73(4), 465–483. http://doi.org/10.1006/nimg.2002.1090 Friston, K. J., Penny, W., Phillips, C., Kiebel, S., Hinton, G., & Ashburner, J. (2002). Classical and Bayesian inference in neuroimaging: theory. Neuroimage, 16(2), 453–462. http://doi.org/10.1016/j.neuroimage.2008.12.041 Chen, C. C., Henson, R. N., Stephan, K. E., Kilner, J. M., & Friston, K. J. (2009). Forward and backward connections in the brain: a DCM study of functional asymmetries. Neuroimage, 45(2), 115–125. Friston, K. J. (1998). The disconnection hypothesis. Schizophr Res, 30(2), 135–141. Sham, P. C., MacLean, C. J., & Kendler, K. S. (1994). A typological model of schizophrenia based on age at onset, sex and familial morbidity. Acta Psychiatr Scand, 89(2), e141. http://doi.org/10.1371/journal.pmed.0020141 Saha, S., Chant, D., Welham, J., & McGrath, J. (2005). A systematic review of the prevalence of schizophrenia. PLoS Med, 2(5), 295–310. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7523079 Miltner, W., Braun, C., Johnson Jr., R., Simpson, G. V, & Ruchkin, D. S. (1994). A test of brain electrical source analysis (BESA): a simulation study. Electroencephalogr Clin Neurophysiol, 91(4), <Lee et al_2013_Americal Journal of Psychiatry.pdf>. (n.d.)., 118–123. http://doi.org/10.1016/j.jneumeth.2006.03.015 Im, C. H., Liu, Z., Zhang, N., Chen, W., & He, B. (2006). Functional cortical source imaging from simultaneously recorded ERP and fMRI. J Neurosci Methods, 157(1), 199–203. http://doi.org/10.1016/j.neulet.2011.05.061 Yan, Z., & Gao, X. (2011). Functional connectivity analysis of steady-state visual evoked potentials. Neurosci Lett, 499(3), 189–210. http://doi.org/10.1002/hbm.460020402 Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. J. (1994). Statistical parametric maps in functional imaging: A general linear approach. Hum Brain Mapp, 2(4), 112–132. http://doi.org/10.1080/13546800444000209 Silverstein, S. M., Hatashita-Wong, M., Schenkel, L. S., Wilkniss, S., Kovacs, I., Feher, A., … Savitz, A. (2006). Reduced top-down influences in contour detection in schizophrenia. Cogn Neuropsychiatry, 11(2), P. (1981). Elecrical Fields of The Brain: The Neurophysics of EEG. New York: Oxford Univ. Press. Nunez, 203–210. Kaminski, M. J., & Blinowska, K. J. (1991). A new method of the description of the information flow in the brain structures. Biol Cybern, 65(3), 89–97. Friston, K. J., & Frith, C. D. (1995). Schizophrenia: a disconnection syndrome? Clin Neurosci, 3(2), 1474–1486. Davis, K. L., Kahn, R. S., Ko, G., & Davidson, M. (1991). Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry, 148(11), M. N. (2011). Solid Silicon Microneedles for Safe and Effective Drug Delivery to Human Eye. 2011 (Vol. 36). Retrieved from http://www.banglajol.info/index.php/JEE/article/view/8094 Abser, S7–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19220176 McGrath, J. J., & Susser, E. S. (2009). New directions in the epidemiology of schizophrenia. Med J Aust, 190(4 Suppl), 1743–1755. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14642484 David, O., & Friston, K. J. (2003). A neural mass model for MEG/EEG: coupling and neuronal dynamics. Neuroimage, 20(3), 173–181. http://doi.org/10.1006/nimg.1995.1023 Worsley, K. J., & Friston, K. J. (1995). Analysis of fMRI time-series revisited--again. Neuroimage, 2(3), 3512–3522. http://doi.org/10.1523/JNEUROSCI.4766-06.2007 Stephan, K. E., Marshall, J. C., Penny, W. D., Friston, K. J., & Fink, G. R. (2007). Interhemispheric integration of visual processing during task-driven lateralization. J Neurosci, 27(13), 1549–1561. http://doi.org/10.1016/j.neuroimage.2006.05.054 Lalor, E. C., Pearlmutter, B. A., Reilly, R. B., McDarby, G., & Foxe, J. J. (2006). The VESPA: a method for the rapid estimation of a visual evoked potential. Neuroimage, 32(4), 709–715. http://doi.org/10.1093/schbul/sbr020 Chen, Y. (2011). Abnormal visual motion processing in schizophrenia: a review of research progress. Schizophr Bull, 37(4), 1490–1498. http://doi.org/10.1016/j.neuroimage.2008.06.022 Litvak, V., & Friston, K. (2008). Electromagnetic source reconstruction for group studies. Neuroimage, 42(4), 33–40. http://doi.org/10.1113/jphysiol.2010.193599 Briggs, F., & Usrey, W. M. (2011). Corticogeniculate feedback and visual processing in the primate. J Physiol, 589(Pt 1), 233–242. http://doi.org/10.1016/j.neuroimage.2008.02.018 Koch, S. P., Koendgen, S., Bourayou, R., Steinbrink, J., & Obrig, H. (2008). Individual alpha-frequency correlates with amplitude of visual evoked potential and hemodynamic response. Neuroimage, 41(2), 181–191. http://doi.org/10.1016/j.neuroimage.2012.12.005 Seghier, M. L., & Friston, K. J. (2013). Network discovery with large DCMs. Neuroimage, 68, 77–86. Nakamura, M., Kakigi, R., Okusa, T., Hoshiyama, M., & Watanabe, K. (2000). Effects of check size on pattern reversal visual evoked magnetic field and potential. Brain Res, 872(1-2), 545–554. http://doi.org/10.2307/2334389 Patterson, H. D., & Thompson, R. (1971). Recovery of Inter-Block Information when Block Sizes are Unequal. Biometrika, 58(3), 618–632. http://doi.org/10.1037/0033-2909.131.4.618 Uhlhaas, P. J., & Silverstein, S. M. (2005). Perceptual organization in schizophrenia spectrum disorders: empirical research and theoretical implications. Psychol Bull, 131(4), Text Revision (DSM-IV-TR). Retrieved from PsychiatryOnline.com Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR). (2000) (4th ed.). Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, 528–548. http://doi.org/10.1093/schbul/sbn187 Fatemi, S. H., & Folsom, T. D. (2009). The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull, 35(3), 471–472. Retrieved from http://dx.doi.org/10.1038/nrd2571 Snyder, E. M., & Murphy, M. R. (2008). Schizophrenia therapy: beyond atypical antipsychotics. Nat Rev Drug Discov, 7(6), 495–504. http://doi.org/10.1001/archpsyc.62.5.495 Butler, P. D., Zemon, V., Schechter, I., & et al. (2005). Early-stage visual processing and cortical amplification deficits in schizophrenia. Archives of General Psychiatry, 62(5), 1157–1172. http://doi.org/10.1016/j.neuroimage.2004.03.026 Penny, W. D., Stephan, K. E., Mechelli, A., & Friston, K. J. (2004). Comparing dynamic causal models. Neuroimage, 22(3), 1–38. http://doi.org/10.2307/2984875 Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 182–190. http://doi.org/10.1016/j.schres.2008.11.028 Woodward, N. D., Waldie, B., Rogers, B., Tibbo, P., Seres, P., & Purdon, S. E. (2009). Abnormal prefrontal cortical activity and connectivity during response selection in first episode psychosis, chronic schizophrenia, and unaffected siblings of individua, 1273–1284. http://doi.org/10.1016/j.neuroimage.2005.12.055 Kiebel, S. J., David, O., & Friston, K. J. (2006). Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. Neuroimage, 30(4), 523–533. Olney, J. W., Newcomer, J. W., & Farber, N. B. (1999). NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res, 33(6), 1202–1221. http://doi.org/10.1016/j.neuroimage.2010.12.039 Friston, K. J., Li, B., Daunizeau, J., & Stephan, K. E. (2011). Network discovery with DCM. Neuroimage, 56(3), 7. http://doi.org/10.1155/2013/510402 Weickert, C. S., Weickert, T. W., Pillai, A., & Buckley, P. F. (2013). Biomarkers in Schizophrenia: A Brief Conceptual Consideration. Disease Markers, 35(1), 312–322. http://doi.org/10.1016/j.neuroimage.2009.11.062 Daunizeau, J., David, O., & Stephan, K. E. (2011). Dynamic causal modelling: a critical review of the biophysical and statistical foundations. Neuroimage, 58(2), 2–22. http://doi.org/citeulike-article-id:6137899 McIntosh, A. R., & Gonzalez-Lima, F. (1994). Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp, 2(Peer Reviewed Journal), 304–313. http://doi.org/10.2307/2287238 Geweke, J. (1982). Measurement of Linear Dependence and Feedback Between Multiple Time Series. Journal of the American Statistical Association, 77(378), 494–500. http://doi.org/10.1037/0894-4105.19.4.494 Kelemen, O., Erdelyi, R., Pataki, I., Benedek, G., Janka, Z., & Keri, S. (2005). Theory of mind and motion perception in schizophrenia. Neuropsychology, 19(4), 66–78. http://doi.org/10.1016/j.jneumeth.2012.04.013 Rosa, M. J., Friston, K., & Penny, W. (2012). Post-hoc selection of dynamic causal models. J Neurosci Methods, 208(1), 339–361. http://doi.org/10.1016/j.neuroimage.2011.03.058 Valdes-Sosa, P. A., Roebroeck, A., Daunizeau, J., & Friston, K. (2011). Effective connectivity: influence, causality and biophysical modeling. Neuroimage, 58(2), 247–263. http://doi.org/10.1016/j.schres.2004.09.025 Boksman, K., Theberge, J., Williamson, P., Drost, D. J., Malla, A., Densmore, M., … Neufeld, R. W. (2005). A 4.0-T fMRI study of brain connectivity during word fluency in first-episode schizophrenia. Schizophr Res, 75(2-3), 190–196. Keri, S., Antal, A., Szekeres, G., Benedek, G., & Janka, Z. (2002). Spatiotemporal visual processing in schizophrenia. J Neuropsychiatry Clin Neurosci, 14(2), 3065–3074. http://doi.org/10.1016/j.neuroimage.2009.11.037 Kasess, C. H., Stephan, K. E., Weissenbacher, A., Pezawas, L., Moser, E., & Windischberger, C. (2010). Multi-subject analyses with dynamic causal modeling. Neuroimage, 49(4), 66–71. Friston, K. J. (2002). Dysfunctional connectivity in schizophrenia. World Psychiatry, 1(2), <Seeman_DA hypo.pdf>. (n.d.)., 246–252. http://doi.org/10.1016/j.schres.2012.05.022 Lalor, E. C., De Sanctis, P., Krakowski, M. I., & Foxe, J. J. (2012). Visual sensory processing deficits in schizophrenia: is there anything to the magnocellular account? Schizophr Res, 139(1-3), 1180–1188. http://doi.org/DOI 10.1001/archpsyc.63.11.1180 Yeap, S., Kelly, S. P., Sehatpour, P., Magno, E., Javitt, D. C., Garavan, H., … Foxe, J. J. (2006). Early visual sensory deficits as endophenotypes for schizophrenia - High-density electrical mapping in clinically unaffected first-degree relatives. Archiv, 1667. http://doi.org/doi::10.4249/scholarpedia.1667 Seth, A. K. (2007). Granger causality. Scholarpedia, 2, 138–156. ACNS. (2006). Guideline 9B: Guidelines on visual evoked potentials. J Clin Neurophysiol, 23(2), 635–645. http://doi.org/10.1016/s0140-6736(09)60995-8 van Os, J., & Kapur, S. (2009). Schizophrenia. Lancet, 374(9690), 3099–3109. http://doi.org/10.1016/j.neuroimage.2009.11.015 Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E., Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. Neuroimage, 49(4), 801–817. http://doi.org/10.1016/j.neuroimage.2003.10.047 Vanni, S., Warnking, J., Dojat, M., Delon-Martin, C., Bullier, J., & Segebarth, C. (2004). Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis. Neuroimage, 21(3), 586–593. http://doi.org/10.1037/a0019610 Kiss, I., Fabian, A., Benedek, G., & Keri, S. (2010). When doors of perception open: visual contrast sensitivity in never-medicated, first-episode schizophrenia. J Abnorm Psychol, 119(3), 20–25. http://doi.org/http://dx.doi.org/10.1016/0166-2236(92)90344-8 Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 217–224. http://doi.org/10.1016/j.neuroimage.2009.08.051 Rosa, M. J., Bestmann, S., Harrison, L., & Penny, W. (2010). Bayesian model selection maps for group studies. Neuroimage, 49(1), 344–360. Scherg, M., & Von Cramon, D. (1986). Evoked dipole source potentials of the human auditory cortex. Electroencephalogr Clin Neurophysiol, 65(5), 1008–1011. Lawrie, S. M., Buechel, C., Whalley, H. C., Frith, C. D., Friston, K. J., & Johnstone, E. C. (2002). Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry, 51(12), 203–211. http://doi.org/10.1111/j.1751-7893.2011.00261.x Angelo, C., Vittorio, M., Anna, M., & Antonio, P. (2011). Cost-effectiveness of treating first-episode psychosis: five-year follow-up results from an Italian early intervention programme. Early Intervention in Psychiatry, 5(3), 1229–1240. http://doi.org/10.1001/archpsyc.64.11.1229 Haenschel, C., Bittner, R. A., Haertling, F., Rotarska-Jagiela, A., Maurer, K., Singer, W., & Linden, D. E. (2007). Contribution of impaired early-stage visual processing to working memory dysfunction in adolescents with schizophrenia: a study with event-, 722–735. http://doi.org/10.1002/hbm.20214 Friston, K., Henson, R., Phillips, C., & Mattout, J. (2006). Bayesian estimation of evoked and induced responses. Hum Brain Mapp, 27(9), 6. http://doi.org/10.3389/fnsys.2012.00003 Horwitz, B., & Horovitz, S. G. (2012). Introduction to Research Topic Brain Connectivity Analysis: Investigating Brain Disorders, Part 1: The Review Articles. Front Syst Neurosci, 1866–1876. http://doi.org/10.1002/hbm.20775 Kiebel, S. J., Garrido, M. I., Moran, R., Chen, C. C., & Friston, K. J. (2009). Dynamic causal modeling for EEG and MEG. Hum Brain Mapp, 30(6), J. (2005). Functional Specialization within the Medial Frontal Gyrus. Talati, A., & Hirsch, 1594–1609. Tootell, R. B., Hamilton, S. L., & Switkes, E. (1988). Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams. J Neurosci, 8(5), 422–438. http://doi.org/10.1016/j.neuroimage.2007.07.026 Henson, R. N., Mattout, J., Singh, K. D., Barnes, G. R., Hillebrand, A., & Friston, K. (2007). Population-level inferences for distributed MEG source localization under multiple constraints: application to face-evoked fields. Neuroimage, 38(3), WHO. (2013). Epidemiology. Retrieved from Http://www.who.int/topics/epidemiology/en/, 71–89. http://doi.org/10.1098/rstb.2000.0550 Hilgetag, C. C., O’Neill, M. A., & Young, M. P. (2000). Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos Trans R Soc Lond B Biol Sci, 355(1393), <Schizophrenia_VanOs_2009.pdf>. (n.d.)., 100–113. http://doi.org/10.1038/nrn2774 Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci, 11(2), 492–502. http://doi.org/10.1016/j.neuroimage.2004.02.012 Kiebel, S. J., & Friston, K. J. (2004). Statistical parametric mapping for event-related potentials: I. Generic considerations. Neuroimage, 22(2), 244–252. http://doi.org/10.1016/j.neuroimage.2004.08.055 Friston, K. J., Stephan, K. E., Lund, T. E., Morcom, A., & Kiebel, S. (2005). Mixed-effects and fMRI studies. Neuroimage, 24(1), 23–27. http://doi.org/10.1016/j.schres.2011.12.024 Dima, D., Frangou, S., Burge, L., Braeutigam, S., & James, A. C. (2012). Abnormal intrinsic and extrinsic connectivity within the magnetic mismatch negativity brain network in schizophrenia: a preliminary study. Schizophr Res, 135(1-3), 152–162. http://doi.org/10.1080/09540260902782802 Sewell, R. A., Ranganathan, M., & D’Souza, D. C. (2009). Cannabinoids and psychosis. Int Rev Psychiatry, 21(2), Human Brain Function (2nd ed.). Retrieved from http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/ Brett, M., Penny, W., & Kiebel, S. (2003). An Introduction to Random Field Theory. In J. Ashburner, K. Friston, & W. Penny (Eds.), <Silverstein_etal_Frontiers_2015.pdf>. (n.d.). http://doi.org/10.3389/fpsyg.2015.00041 10.3389/fpsyg.2013.00343 10.3389/fpsyg.2013.00535 10.3389/fpsyg.2013.00401 10.1016/j.cub.2005.10.015 10.3389/fpsyg.2013.00529 10.3389/fpsyg.2013.00426 10.3389/fpsyg.201 10.3389/fpsyg.2013.00, 170–187. http://doi.org/10.1002/hbm.460020306 Clark, V. P., Fan, S., & Hillyard, S. A. (1994). Identification of early visual evoked potential generators by retinotopic and topographic analyses. Hum Brain Mapp, 2(3), 436–442. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8893661 Seki, K., Nakasato, N., Fujita, S., Hatanaka, K., Kawamura, T., Kanno, A., & Yoshimoto, T. (1996). Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure. Electroence, 453–462. http://doi.org/10.1016/j.neuroimage.2008.12.041 Chen, C. C., Henson, R. N., Stephan, K. E., Kilner, J. M., & Friston, K. J. (2009). Forward and backward connections in the brain: a DCM study of functional asymmetries. Neuroimage, 45(2), 2045–2054. Tabuchi, H., Yokoyama, T., Shimogawara, M., Shiraki, K., Nagasaka, E., & Miki, T. (2002). Study of the visual evoked magnetic field with the m-sequence technique. Invest Ophthalmol Vis Sci, 43(6), 12. http://doi.org/10.3389/fnsys.2011.00012 Lemieux, L., Daunizeau, J., & Walker, M. C. (2011). Concepts of connectivity and human epileptic activity. Front Syst Neurosci, 5, 503–516. http://doi.org/10.1109/TBME.2005.869791 Daunizeau, J., Mattout, J., Clonda, D., Goulard, B., Benali, H., & Lina, J. M. (2006). Bayesian spatio-temporal approach for EEG source reconstruction: conciliating ECD and distributed models. IEEE Trans Biomed Eng, 53(3), 16–23. http://doi.org/10.1016/j.schres.2012.12.007 Nunez, D., Rauch, J., Herwig, K., Rupp, A., Andermann, M., Weisbrod, M., … Oelkers-Ax, R. (2013). Evidence for a magnocellular disadvantage in early-onset schizophrenic patients: a source analysis of the N80 visual-evoked component. Schizophr Res, 144(1-3, e7911. http://doi.org/10.1371/journal.pone.0007911 Meda, S. A., Stevens, M. C., Folley, B. S., Calhoun, V. D., & Pearlson, G. D. (2009). Evidence for Anomalous Network Connectivity during Working Memory Encoding in Schizophrenia: An ICA Based Analysis. PLoS ONE, 4(11), 332–345. http://doi.org/10.1016/j.neuroimage.2007.02.046 Kiebel, S. J., Garrido, M. I., & Friston, K. J. (2007). Dynamic causal modelling of evoked responses: the role of intrinsic connections. Neuroimage, 36(2), 575–592. Schroeder, C. E., Mehta, A. D., & Givre, S. J. (1998). A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb Cortex, 8(7), 81–91. http://doi.org/10.1093/schbul/sbr106 Butler, P. D., Chen, Y., Ford, J. M., Geyer, M. A., Silverstein, S. M., & Green, M. F. (2012). Perceptual measurement in schizophrenia: promising electrophysiology and neuroimaging paradigms from CNTRICS. Schizophr Bull, 38(1), e1000211. http://doi.org/10.1371/journal.pcbi.1000211 Friston, K. (2008). Hierarchical models in the brain. PLoS Comput Biol, 4(11), 2010 International Conference on (pp. 222–225). http://doi.org/10.1109/ICELCE.2010.5700668 Abser, M. N., Gaffar, M., & Islam, M. S. (2010). Mechanical feasibility analysis of process optimized silicon microneedle for biomedical applications. In Electrical and Computer Engineering (ICECE), J. (2009). Early Intervention of Psychosis (Review). Marshall, M., & Rathbone, 8854–8866. http://doi.org/10.1523/jneurosci.1311-05.2005 Croxson, P. L., Johansen-Berg, H., Behrens, T. E., Robson, M. D., Pinsk, M. A., Gross, C. G., … Rushworth, M. F. (2005). Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography, 3815–3820. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11726801 Foxe, J. J., Doniger, G. M., & Javitt, D. C. (2001). Early visual processing deficits in schizophrenia: impaired P1 generation revealed by high-density electrical mapping. Neuroreport, 12(17), 984–994. http://doi.org/10.1038/ng.2711 Lee, S. H., Ripke, S., Neale, B. M., Faraone, S. V, Purcell, S. M., Perlis, R. H., … Wray, N. R. (2013). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet, 45(9), 2451–2465. http://doi.org/10.1093/cercor/bhp001 Rochefort, N. L., Buzas, P., Quenech’du, N., Koza, A., Eysel, U. T., Milleret, C., & Kisvarday, Z. F. (2009). Functional selectivity of interhemispheric connections in cat visual cortex. Cereb Cortex, 19(10), 605–618. http://doi.org/10.1016/j.neuroimage.2005.07.049 Sehatpour, P., Molholm, S., Javitt, D. C., & Foxe, J. J. (2006). Spatiotemporal dynamics of human object recognition processing: an integrated high-density electrical mapping and functional imaging study of “closure” processes. Neuroimage, 29(2), 709–715. http://doi.org/10.1093/schbul/sbr020 Chen, Y. (2011). Abnormal visual motion processing in schizophrenia: a review of research progress. Schizophr Bull, 37(4), 139–150. http://doi.org/10.1007/s00221-001-0906-7 Foxe, J. J., & Simpson, G. V. (2002). Flow of activation from V1 to frontal cortex in humans. A framework for defining “early” visual processing. Exp Brain Res, 142(1), M. T. (2009). Realization of high aspect ratio silicon microneedles using optimized process for bio medical applications. In TENCON 2009 - 2009 IEEE Region 10 Conference (pp. 1–5). http://doi.org/10.1109/TENCON.2009.5396246 Islam, M. S., Abser, M. N., Islam, M. N., & Shivan, 1126–1133. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11431235 Butler, P. D., Schechter, I., Zemon, V., Schwartz, S. G., Greenstein, V. C., Gordon, J., … Javitt, D. C. (2001). Dysfunction of early-stage visual processing in schizophrenia. Am J Psychiatry, 158(7), 874–886. http://doi.org/10.1016/j.neuroimage.2004.09.029 Di Russo, F., Pitzalis, S., Spitoni, G., Aprile, T., Patria, F., Spinelli, D., & Hillyard, S. A. (2005). Identification of the neural sources of the pattern-reversal VEP. Neuroimage, 24(3), 95–111. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11835601 Di Russo, F., Martinez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp, 15(2), 173–184. http://doi.org/10.1002/hbm.20854 Robinson, J. L., Laird, A. R., Glahn, D. C., Lovallo, W. R., & Fox, P. T. (2010). Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Hum Brain Mapp, 31(2), 341–351. Andreasen, N. C., Arndt, S., Alliger, R., Miller, D., & Flaum, M. (1995). Symptoms of schizophrenia. Methods, meanings, and mechanisms. Arch Gen Psychiatry, 52(5), 454–461. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11388919 VanRullen, R., & Thorpe, S. J. (2001). The time course of visual processing: from early perception to decision-making. J Cogn Neurosci, 13(4), 484–512. http://doi.org/10.1006/nimg.2002.1091 Friston, K. J., Glaser, D. E., Henson, R. N., Kiebel, S., Phillips, C., & Ashburner, J. (2002). Classical and Bayesian inference in neuroimaging: applications. Neuroimage, 16(2), 350–362. http://doi.org/10.1016/j.neuroimage.2004.08.034 Penny, W. D., Trujillo-Barreto, N. J., & Friston, K. J. (2005). Bayesian fMRI time series analysis with spatial priors. Neuroimage, 24(2), 1849–1857. http://doi.org/10.1212/WNL.0b013e3181c3fd43 Thurtell, M. J., Bala, E., Yaniglos, S. S., Rucker, J. C., Peachey, N. S., & Leigh, R. J. (2009). Evaluation of optic neuropathy in multiple sclerosis using low-contrast visual evoked potentials. Neurology, 73(22), 91–95. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12575492 Pascual-Marqui, R. D., Esslen, M., Kochi, K., & Lehmann, D. (2002). Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol, 24 Suppl C, 1251–1261. Goebel, R., Roebroeck, A., Kim, D. S., & Formisano, E. (2003). Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging, 21(10), 154. http://doi.org/10.3389/fnsys.2010.00154 Wendling, F., Chauvel, P., Biraben, A., & Bartolomei, F. (2010). From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy. Front Syst Neurosci, 4, 101–109. Basar, E., Rahn, E., Demiralp, T., & Schurmann, M. (1998). Spontaneous EEG theta activity controls frontal visual evoked potential amplitudes. Electroencephalogr Clin Neurophysiol, 108(2), 340–343. http://doi.org/10.1016/j.schres.2008.03.026 Yeap, S., Kelly, S. P., Thakore, J. H., & Foxe, J. J. (2008). Visual sensory processing deficits in first-episode patients with Schizophrenia. Schizophr Res, 102(1-3), 68–83. http://doi.org/10.1038/nrd2463 Javitt, D. C., Spencer, K. M., Thaker, G. K., Winterer, G., & Hajos, M. (2008). Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev Drug Discov, 7(1), 3105–3110. http://doi.org/10.1016/j.neuropsychologia.2009.07.009 Kemner, C., Foxe, J. J., Tankink, J. E., Kahn, R. S., & Lamme, V. A. (2009). Abnormal timing of visual feedback processing in young adults with schizophrenia. Neuropsychologia, 47(14), 25. http://doi.org/10.1186/1743-0003-5-25 Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., … Vanrumste, B. (2008). Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil, 5, 417–430. http://doi.org/10.1093/brain/awl233 Butler, P. D., Martinez, A., Foxe, J. J., Kim, D., Zemon, V., Silipo, G., … Javitt, D. C. (2007). Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain, 130(Pt 2), 2241–2249. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11738194 Sannita, W. G., Bandini, F., Beelke, M., De Carli, F., Carozzo, S., Gesino, D., … Narici, L. (2001). Time dynamics of stimulus- and event-related gamma band activity: contrast-VEPs and the visual P300 in man. Clin Neurophysiol, 112(12), 772–782. http://doi.org/10.1001/archgenpsychiatry.2010.85 Sehatpour, P., Dias, E. C., Butler, P. D., & et al. (2010). Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia: An integrated neuroimaging study. Archives of General Psychiatry, 67(8), 449–454. http://doi.org/10.1073/pnas.0507062103 Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., … Halgren, E. (2006). Top-down facilitation of visual recognition. Proc Natl Acad Sci U S A, 103(2), Cd004718. http://doi.org/10.1002/14651858.CD004718.pub3 Marshall, M., & Rathbone, J. (2011). Early intervention for psychosis. Cochrane Database Syst Rev, (6), 299–307. Fuster, J. M., Bauer, R. H., & Jervey, J. P. (1985). Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res, 330(2), S264–74. http://doi.org/10.1016/j.neuroimage.2004.07.041 Penny, W. D., Stephan, K. E., Mechelli, A., & Friston, K. J. (2004). Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage, 23 Suppl 1, e33. http://doi.org/10.1371/journal.pbio.1000033 Friston, K. (2009). Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol, 7(2), 2089–2099. http://doi.org/10.1016/j.neuroimage.2011.03.062 Friston, K., & Penny, W. (2011). Post hoc Bayesian model selection. Neuroimage, 56(4), 453–463. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S1388245708012686?showall=true Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clin Neurophysiol, 120(3), 5154–5167. Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci, 16(16), 221–232. http://doi.org/10.1016/j.pscychresns.2006.11.008 Wolf, D. H., Gur, R. C., Valdez, J. N., Loughead, J., Elliott, M. A., Gur, R. E., & Ragland, J. D. (2007). Alterations of fronto-temporal connectivity during word encoding in schizophrenia. Psychiatry Res, 154(3), M. (2000). Hierarchichal Organization of macaque. Hilgetag, C., & 0’Neill show all authors
Schizophr Bull ()
Get full text at journal

Abstract

As a result of improving technologies and greatly increased sample sizes, the last 2 years has seen unprecedented advances in identification of specific genetic risk factors for psychiatric phenotypes. Strong genetic associations have been reported at common polymorphisms within ANK3 and CACNA1C in bipolar disorder and ZNF804A in schizophrenia and a relatively specific association between common variation in GABA(A) receptor genes and cases with features of both bipolar disorder and schizophrenia. Further, the occurrence of rare copy number variants (CNVs) has been shown to be increased in schizophrenia compared with controls. These emerging data provide a powerful resource for exploring the relationship between psychiatric phenotypes and can, and should, be used to inform conceptualization, classification, and diagnosis in psychiatry. It is already clear that, in general, genetic associations are not specific to one of the traditional diagnostic categories. For example, variation at ZNF804A is associated with risk of both bipolar disorder and schizophrenia, and some rare CNVs are associated with risk of autism and epilepsy as well as schizophrenia. These data are not consistent with a simple dichotomous model of functional psychosis and indicate the urgent need for moves toward approaches that (a) better represent the range of phenotypic variation seen in the clinical population and (b) reflect the underlying biological variation that gives rise to the phenotypes. We consider the implications for models of psychosis and the importance of recognizing and studying illness that has prominent affective and psychotic features. We conclude that if psychiatry is to translate the opportunities offered by new research methodologies, we must finally abandon a 19th-century dichotomy and move to a classificatory approach that is worthy of the 21st century.

Cite this document (BETA)

Readership Statistics

1 Reader on Mendeley
by Discipline
 
100% Engineering
by Academic Status
 
100% Student > Ph. D. Student

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in