Skip to content

Response of fine particulate matter concentrations to changes of emissions and temperature in Europe

by A. G. Megaritis, C. Fountoukis, P. E. Charalampidis, C. Pilinis, S. N. Pandis
Atmospheric Chemistry and Physics ()
Get full text at journal


PMCAMx-2008, a three dimensional chemical transport model (CTM), was applied in Europe to quantify the changes in fine particle (PM 2.5) concentration in response to different emission reductions as well as to temperature in-crease. A summer and a winter simulation period were used, to investigate the seasonal dependence of the PM 2.5 response to 50 % reductions of sulfur dioxide (SO 2), ammonia (NH 3), nitrogen oxides (NO x), anthropogenic volatile organic com-pounds (VOCs) and anthropogenic primary organic aerosol (POA) emissions and also to temperature increases of 2.5 and 5 K. Reduction of NH 3 emissions seems to be the most effective control strategy for reducing PM 2.5 , in both pe-riods, resulting in a decrease of PM 2.5 up to 5.1 µg m −3 and 1.8 µg m −3 (5.5 % and 4 % on average) during summer and winter respectively, mainly due to reduction of ammo-nium nitrate (NH 4 NO 3) (20 % on average in both periods). The reduction of SO 2 emissions decreases PM 2.5 in both periods having a significant effect over the Balkans (up to 1.6 µg m −3) during the modeled summer period, mainly due to decrease of sulfate (34 % on average over the Balkans). The anthropogenic POA control strategy reduces total OA by 15 % during the modeled winter period and 8 % in the sum-mer period. The reduction of total OA is higher in urban areas close to its emissions sources. A slight decrease of OA (8 % in the modeled summer period and 4 % in the modeled win-ter period) is also predicted after a 50 % reduction of VOCs emissions due to the decrease of anthropogenic SOA. The re-duction of NO x emissions reduces PM 2.5 (up to 3.4 µg m −3) during the summer period, due to a decrease of NH 4 NO 3 , causing although an increase of ozone concentration in ma-jor urban areas and over Western Europe. Additionally, the NO x control strategy actually increases PM 2.5 levels during the winter period, due to more oxidants becoming available to react with SO 2 and VOCs. The increase of temperature results in a decrease of PM 2.5 in both periods over Central Europe, mainly due to a decrease of NH 4 NO 3 during sum-mer (18 %) and fresh POA during wintertime (35 %). Signif-icant increases of OA are predicted during the summer due mainly to the increase of biogenic VOC emissions. On the contrary, OA is predicted to decrease in the modeled win-ter period due to the dominance of fresh POA reduction and the small biogenic SOA contribution to OA. The resulting in-crease of oxidant levels from the temperature rise lead to an increase of sulfate levels in both periods, mainly over North Europe and the Atlantic Ocean. The substantial reduction of PM 2.5 components due to emissions reductions of their pre-cursors outlines the importance of emissions for improving air quality, while the sensitivity of PM 2.5 concentrations to temperature changes indicate that climate interactions need to be considered when predicting future levels of PM, with different net effects in different parts of Europe.

Cite this document (BETA)

Readership Statistics

36 Readers on Mendeley
by Discipline
36% Environmental Science
33% Earth and Planetary Sciences
14% Engineering
by Academic Status
47% Student > Ph. D. Student
25% Researcher
8% Student > Bachelor
by Country
8% United States
3% India
3% Germany

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Sign up & Download

Already have an account? Sign in