The role of mineral aerosol in tropospheric chemistry in East Asia-a model study

198Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A detailed gas-phase chemistry mechanism is combined with dust surface uptake processes to explore possible impacts of mineral dust on tropospheric chemistry. The formations of sulfate and nitrate on dust are studied along with the dust effects on the photochemical oxidant cycle for the long-range-transported particles with a diameter of 0.1-40 μm. The results show that mineral dust may influence tropospheric sulfate, nitrate, and O3 formation by affecting trace gas concentrations and the tropospheric oxidation capacity through surface processes. The postulated heterogeneous mechanism provides a plausible interpretation for the observed high nitrate and sulfate on dust and the anticorrelation between O3 and dust in East Asia. The presence of dust results in decreases in the concentrations of SO2 (10%-53%), NO(y)(p) (16%-100%, defined as NO3 + N2O5 + HNO3), H(x)O(y) (11%-59%, defined as OH + HO2 + H2O2), and O3 (11%-40%) under model conditions representative of spring dust storms in East Asia. The decrease in solar actinic flux and the surface uptake of O3 and its precursors contribute to the total O3 decrease for the conditions studied. Nitrate and sulfate, 0.9-2.1 and 0.3-10 μg m-3, respectively, are formed on dust particles, mostly in the size range of 1.5-10 μm. The magnitude of the dust effect strongly depends on the preexisting dust surfaces, the initial conditions, and the selection of model parameters associated with surface uptake processes. The impact of dust reactions on O3 reduction is highly sensitive to the uptake coefficient and to the possible renoxification from the surface reaction of HNO3 on dust.

Cite

CITATION STYLE

APA

Zhang, Y., & Carmichael, G. R. (1999). The role of mineral aerosol in tropospheric chemistry in East Asia-a model study. Journal of Applied Meteorology, 38(3), 353–366. https://doi.org/10.1175/1520-0450(1999)038<0353:TROMAI>2.0.CO;2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free