Toward a better understanding of the savant brain

19Citations
Citations of this article
143Readers
Mendeley users who have this article in their library.

Your institution provides access to this article.

Abstract

Objective: The objectives of this study are to investigate the neuroanatomy, regional brain connectivity, and neurochemistry of a prodigious artistic savant; to place these findings within the context of existing neuroimaging literature of savant syndrome; and to discuss the utility of newer imaging modalities to extend our current understanding of mechanisms underlying savant skills. Methods: High-resolution magnetic resonance (MR) imaging, J-resolved MR spectroscopy, and diffusion tensor imaging data were acquired during a single scanning session for a 63-year-old male autistic savant with prodigious artistic skills. Regional and compartmental brain volumes, N-acetyl aspartate, choline, creatine, glutamate and γ-aminobutyric acid concentrations, fractional anisotropy values, and white matter bundle volumes as well as axial, radial, and mean diffusivities were calculated. Results: No gross anatomical differences were observed. By morphological assessment, cerebral volume (1362 mL) was larger than normative literature values for adult males. The corpus callosum was intact and did not exhibit abnormal structural features. The right cerebral hemisphere was 1.9% larger than the left hemisphere; the right amygdala and right caudate nuclei were 24% and 9.9% larger, respectively, compared with the left side. In contrast, the putamen was 8.3% larger on the left side. Fractional anisotropy was increased on the right side as compared with the left for 4 of the 5 bilateral regions studied (the amygdala, caudate, frontal lobe, and hippocampus). Fiber tract bundle volumes were larger on the right side for the amygdala, hippocampus, frontal lobe, and occipital lobe. Both the left and the right hippocampi had substantially increased axial and mean diffusivities as compared with those of a comparison sample of nonsavant adult males. The corpus callosum and left amygdala also exhibited high axial, radial, and mean diffusivities. MR spectroscopy revealed markedly decreased γ-aminobutyric acid and glutamate in the parietal lobe. Conclusions: Although examination of brain gross morphometry demonstrated no clinically remarkable abnormalities, utilization of conventional as well as newer MR imaging technologies revealed several atypical structural and chemical features that may be involved in the special skills of this prodigious savant. The multimodal imaging approach presented in this study is suitable for the evaluation of larger samples of savants with a diverse range of talents to investigate common brain features that may underlie the exceptional cognitive capabilities characteristic of savant syndrome. Given the high co-occurrence of the two syndromes, elucidating the underlying neurophysiologic basis of savant syndrome may also lead to a better understanding of autism spectrum disorder. © 2012 Elsevier Inc.

Cite

CITATION STYLE

APA

Corrigan, N. M., Richards, T. L., Treffert, D. A., & Dager, S. R. (2012). Toward a better understanding of the savant brain. Comprehensive Psychiatry, 53(6), 706–717. https://doi.org/10.1016/j.comppsych.2011.11.006

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free