Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy

177Citations
Citations of this article
162Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Photochemical interconversion between the red-absorbing (Pr) and the far-red-absorbing (Pfr) forms of the photosensory protein phytochrome initiates signal transduction in bacteria and higher plants. The Pr-to-Pfr transition commences with a rapid Z-to-E photoisomerization at the C15 = C16 methine bridge of the bilin prosthetic group. Here, we use femtosecond stimulated Raman spectroscopy to probe the structural changes of the phycocyanobilin chromophore within phytochrome Cph1 on the ultrafast time scale. The enhanced intensity of the C15-H hydrogen out-of-plane (HOOP) mode, together with the appearance of red-shifted CAC stretch and N - H in-plane rocking modes within 500 fs, reveal that initial distortion of the C15 = C16 bond occurs in the electronically excited I* intermediate. From I*, 85% of the excited population relaxes back to Pr in 3 ps, whereas the rest goes on to the Lumi-R photoproduct consistent with the 15% photochemical quantum yield. The C15-H HOOP and skeletal modes evolve to a Lumi-R-like pattern after 3 ps, thereby indicating that the C15 = C16 Z-to-E isomerization occurs on the excited-state surface. © 2009 by The National Academy of Sciences of the USA.

Cite

CITATION STYLE

APA

Dasgupta, J., Frontiera, R. R., Taylor, K. C., Lagarias, J. C., & Mathies, R. A. (2009). Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1784–1789. https://doi.org/10.1073/pnas.0812056106

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free