Type 2 diabetes mellitus is characterized by insulin resistance and failure of pancreatic β-cells producing insulin. Autophagy plays a crucial role in cellular homeostasis through degradation and recycling of organelles such as mitochondria or endoplasmic reticulum (ER). Here we discussed the role of β-cell autophagy in development of diabetes, based on our own studies using mice with β-cell-specific deletion of Atg7 (autophagy-related 7), an important autophagy gene, and studies by others. β-cell-specific Atg7-null mice showed reduction in β-cell mass and pancreatic insulin content. Insulin secretory function ex vivo was also impaired, which might be related to organelle dysfunction associated with autophagy deficiency. As a result, β-cell-specific Atg7-null mice showed hypoinsulinemia and hyperglycemia. However, diabetes never developed in those mice. Obesity and/or lipid are physiological ER stresses that can precipitate β-cell dysfunction. Our recent studies showed that β-cellspecific Atg7-null mice, when bred with ob/ob mice, indeed become diabetic. Thus, autophagy deficiency in β-cells could be a precipitating factor in the progression from obesity to diabetes due to inappropriate response to obesity-induced ER stress. © 2012 by the The Korean Society for Biochemistry and Molecular Biology.
CITATION STYLE
Quan, W., Lim, Y. M., & Lee, M. S. (2012). Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic β-cells. Experimental and Molecular Medicine, 44(2), 81–88. https://doi.org/10.3858/emm.2012.44.2.030
Mendeley helps you to discover research relevant for your work.