Methylmercury can induce Parkinson’s-like neurotoxicity similar to 1-methyl-4- phenylpyridinium: A genomic and proteomic analysis on MN9D dopaminergic neuron cells

28Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

Exposure to environmental chemicals has been implicated as a possible risk factor for the development of neurodegenerative diseases. Our previous study showed that methylmercury (MeHg) exposure can disrupt synthesis, uptake and metabolism of dopamine similar to 1-methyl-4- phenylpyridinium (MPP+). The objective of this study was to investigate the effects of MeHg exposure on gene and protein profiles in a dopaminergic MN9D cell line. MN9D cells were treated with MeHg (1-5 μM) and MPP+ (10-40 μM) for 48 hr. Real-time PCR Parkinson’s disease (PD) arrays and highperformance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/ MS) were performed for the analysis. PD PCR array results showed that 19% genes were significantly changed in the 2.5 μM MeHg treated cells, and 39% genes were changed in the 5 μM MeHg treated cells. In comparison, MPP+ treatment (40 μM) resulted in significant changes in 25% genes. A total of 15 common genes were altered by both MeHg and MPP+, and dopaminergic signaling transduction was the most affected pathway. Proteomic analysis identified a total of 2496 proteins, of which 188, 233 and 395 proteins were differentially changed by 1 μM and 2.5 μM MeHg, and MPP+ respectively. A total of 61 common proteins were changed by both MeHg and MPP+ treatment. The changed proteins were mainly involved in energetic generation-related metabolism pathway (propanoate metabolism, pyruvate metabolism and fatty acid metabolism), oxidative phosphorylation, proteasome, PD and other neurodegenerative disorders. A total of 7 genes/proteins including Ube2l3 (Ubiquitin-conjugating enzyme E2 L3) and Th (Tyrosine 3-monooxygenase) were changed in both genomic and proteomic analysis. These results suggest that MeHg and MPP+ share many similar signaling pathways leading to the pathogenesis of PD and other neurodegenerative diseases.

Cite

CITATION STYLE

APA

Shao, Y., Figeys, D., Ning, Z., Mailloux, R., & Chan, H. M. (2015). Methylmercury can induce Parkinson’s-like neurotoxicity similar to 1-methyl-4- phenylpyridinium: A genomic and proteomic analysis on MN9D dopaminergic neuron cells. Journal of Toxicological Sciences, 40(6), 817–828. https://doi.org/10.2131/jts.40.817

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free