Three-dimensional empirical AoA localization technique for indoor applications

14Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Small and pervasive devices have been increasingly used to identify and track objects automatically. Consequently, several low-cost localization schemes have been proposed in the literature based on angle of arrival (AoA), time difference of arrival (TDoA), received signal strength indicator (RSSI) or their combinations. In this paper, we propose a three-dimensional empirical AoA localization (TDEAL) technique for battery-powered devices. The proposed technique processes the AoA measurements at fixed reader nodes to estimate the locations of the tags. The proposed technique provides localization accuracy that mitigates non-linear empirical errors in AoA measurements. We utilize two omni-directional antenna arrays at each fixed reader node to estimate the location vector. With multiple location estimations from different fixed reader nodes, each estimated location is assigned a weight that is inversely proportional to the AoA phase-difference error. Furthermore, the actual AoA parabolic formula of the location is approximated to a cone to simplify the location calculation process. The proposed localization technique has a low hardware cost, low computational requirements, and precise location estimates. Based on the performance evaluation, significant location accuracy is achieved by TDEAL; where, for instance, an average error margin of less than 13 cm is achieved using 10 readers in an area of 10 × 10 m. TDEAL can be utilized to provide reference points when integrated with a relative (e.g., inertial navigation systems) localization systems.

Cite

CITATION STYLE

APA

Alma’aitah, A., Alsaify, B., & Bani-Hani, R. (2019). Three-dimensional empirical AoA localization technique for indoor applications. Sensors (Switzerland), 19(24). https://doi.org/10.3390/s19245544

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free