Crop classification of large-scale agricultural land is crucial for crop monitoring and yield estimation. Hyperspectral image classification has proven to be an effective method for this task. Most current popular hyperspectral image classification methods are based on image classification, specifically on convolutional neural networks (CNNs) and recurrent neural networks (RNNs). In contrast, this paper focuses on methods based on semantic segmentation and proposes a new transformer-based approach called HyperSFormer for crop hyperspectral image classification. The key enhancement of the proposed method is the replacement of the encoder in SegFormer with an improved Swin Transformer while keeping the SegFormer decoder. The entire model adopts a simple and uniform transformer architecture. Additionally, the paper introduces the hyper patch embedding (HPE) module to extract spectral and local spatial information from the hyperspectral images, which enhances the effectiveness of the features used as input for the model. To ensure detailed model processing and achieve end-to-end hyperspectral image classification, the transpose padding upsample (TPU) module is proposed for the model’s output. In order to address the problem of insufficient and imbalanced samples in hyperspectral image classification, the paper designs an adaptive min log sampling (AMLS) strategy and a loss function that incorporates dice loss and focal loss to assist model training. Experimental results using three public hyperspectral image datasets demonstrate the strong performance of HyperSFormer, particularly in the presence of imbalanced sample data, complex negative samples, and mixed sample classes. HyperSFormer outperforms state-of-the-art methods, including fast patch-free global learning (FPGA), a spectral–spatial-dependent global learning framework (SSDGL), and SegFormer, by at least 2.7% in the mean intersection over union (mIoU). It also improves the overall accuracy and average accuracy values by at least 0.9% and 0.3%, respectively, and the kappa coefficient by at least 0.011. Furthermore, ablation experiments were conducted to determine the optimal hyperparameter and loss function settings for the proposed method, validating the rationality of these settings and the fusion loss function.
CITATION STYLE
Xie, J., Hua, J., Chen, S., Wu, P., Gao, P., Sun, D., … Lu, J. (2023). HyperSFormer: A Transformer-Based End-to-End Hyperspectral Image Classification Method for Crop Classification. Remote Sensing, 15(14). https://doi.org/10.3390/rs15143491
Mendeley helps you to discover research relevant for your work.