Beginning with clinical evidence of fatal cardiac arrhythmias in response to severe stress, in epileptic patients, and following stroke, the role of the cerebral cortex in autonomic control of the cardiovascular system has gained both academic and clinical interest. Studies in anesthetized rodents have exposed the role of several forebrain regions involved in cardiovascular control. The introduction of functional neuroimaging techniques has enabled investigations into the conscious human brain to illuminate the temporal and spatial activation patterns of cortical regions that are involved with cardiovascular control through the autonomic nervous system. This symposia report emphasizes the research performed by the authors to understand the functional organization of the human forebrain in cardiovascular control during physical stressors of baroreceptor unloading and handgrip exercise. The studies have exposed important associations between activation patterns of the insula cortex, dorsal anterior cingulate, and the medial prefrontal cortex and cardiovascular adjustments to physical stressors. Furthermore, these studies provide functional anatomic evidence that sensory signals arising from baroreceptors and skeletal muscle are represented within the insula cortex and the medial prefrontal cortex, in addition to the sensory cortex. Thus, the cortical pathways subserving reflex cardiovascular control integrate viscerosensory inputs with outgoing traffic that modulates the autonomic nervous system. © 2012 Wiley Periodicals, Inc..
CITATION STYLE
Shoemaker, J. K., Wong, S. W., & Cechetto, D. F. (2012). Cortical Circuitry Associated With Reflex Cardiovascular Control in Humans: Does the Cortical Autonomic Network “Speak” or “Listen” During Cardiovascular Arousal. Anatomical Record, 295(9), 1375–1384. https://doi.org/10.1002/ar.22528
Mendeley helps you to discover research relevant for your work.