Robust Relay in Narrow-Band Communications for Ubiquitous IoT Access

2Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We propose a robust wireless relay scheme in narrow-band communications for IoT access, which matches the typical features of IoT often carrying relatively low data rate with limited bandwidth. This framework is towards offering robustness in QoS guarantees with emphases on security and/or reliability, and we use the security-assured network as the typical scenario. In particular, we consider a dual-hop relay network including a transmitter, a receiver, an amplify-and-forward (AF) untrusted relay, and a jamming node. The jamming node is treated as a helper. Specifically, the jammer broadcasts artificial noise (AN), which in fact pollutes both the untrusted relay and the destination node's signals. However, we show that such AN can be effectively mitigated after the destination node obtains the forwarded signal from the relay, while the untrusted relay node cannot do so. The core idea for robustness assurance is to exploit higher signal dimensions at the receiver over the untrusted relay node. Simulations and analyses are also conducted to demonstrate that our proposed scheme can make the performance at the untrusted relay an interference-limited manner while completely removing the interferences at the receiver, therefore corroborating our claim in robustness in terms of security and reliability.

Cite

CITATION STYLE

APA

Du, Q., Lu, N., Sun, L., Zhang, X., & Sun, B. (2017). Robust Relay in Narrow-Band Communications for Ubiquitous IoT Access. Journal of Sensors, 2017. https://doi.org/10.1155/2017/9270907

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free