Background: Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are 2 common liver diseases that currently lack effective treatment options. Objectives: This study aimed to investigate the effect of lipopolysaccharide (LPS)-stimulated adipose-derived stem cells (ADSCs) on NAFLD treatment in an animal model. Methods: Male Wistar rats were fed a high-fat diet (HFD) to induce NAFLD for 7 weeks. The rats were then categorized into 3 groups: Mesenchymal stem cell (MSC), MSC + LPS, and fenofibrate (FENO) groups. Liver and body weight were measured, and the expression of genes involved in fatty acid biosynthesis, β-oxidation, and inflammatory responses was assessed. Results: Lipopolysaccharide-stimulated ADSCs were more effective in regulating liver and body weight gain and reducing liver triglyceride (TG) levels compared to the other groups. Treatment with LPS-stimulated ADSCs effectively corrected liver enzymes, including alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and lipid factors, including low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) values, better than treatment with both FENO and MSCs. ADSCs + LPS treatment significantly decreased transforming growth factor β (TGF-β) and genes associated with inflammatory responses. Additionally, there was a significant reduction in reactive oxygen species (ROS) levels in the rats treated with ADSCs + LPS. Conclusions: Lipopolysaccharide-stimulated ADSCs showed potential in alleviating NAFLD by reducing inflammatory genes and ROS levels in HFD rats, demonstrating better results than treatment with ADSCs and FENO groups alone.
CITATION STYLE
Afarin, R., Aslani, F., Asadizade, S., Asl, B. J., Gahrooie, M. M., Shakerian, E., & Ahangarpour, A. (2023). The Effect of Lipopolysaccharide-Stimulated Adipose-Derived Mesenchymal Stem Cells on NAFLD Treatment in High-Fat Diet-Fed Rats. Iranian Journal of Pharmaceutical Research, 22(1). https://doi.org/10.5812/ijpr-134807
Mendeley helps you to discover research relevant for your work.