High-throughput screening for biomedical applications in a Ti-Zr-Nb alloy system through masking co-sputtering

34Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A method of co-sputtering deposition combined with physical masking was applied to the parallel preparation of a ternary Ti-Nb- Zr system alloy. Sixteen independent specimens with varying compositions were obtained. Their microstructure, phase structure, Young’s modulus, nanoindentation hardness, and electrochemical behavior in a phosphate buffer solution (PBS) were studied in detail. It was revealed that the Ti-Zr-Nb alloys possess a single BCC structure. As confirmed via nanoindentation tests, the Young’s modulus of the specimens ranged from 80.3 to 94.8 GPa and the nanoindentation hardness ranged from 3.6 to 5.0 GPa. By optimizing the composition of the specimens, the Ti34Zr52Nb14 alloy was made to possess the lowest modulus in this work (76.5 GPa). Moreover, the Ti34Zr52Nb14 alloy showed excellent corrosion resistance in PBS without any tendency for pitting at anodic potentials up to 1 Vsce. These preliminary advantages offer the opportunity to explore new orthopedic implant alloys based on Ti-Zr-Nb alloys. Moreover, this work provides an effective method for the parallel preparation of biomedical alloys.

Cite

CITATION STYLE

APA

Yan, X. H., Ma, J., & Zhang, Y. (2019). High-throughput screening for biomedical applications in a Ti-Zr-Nb alloy system through masking co-sputtering. Science China: Physics, Mechanics and Astronomy, 62(9). https://doi.org/10.1007/s11433-019-9387-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free