Image segmentation using dual distribution matching

2Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

We propose an image segmentation method that divides an image into foreground and background regions when the approximate color distributions for these regions are given. Our approach was inspired by global consistency measures that directly evaluate the similarity between a given distribution and the distribution of the resulting segmentation, which were recently proposed in order to overcome the limitations of traditional pixelwise (local) consistency measures. The main feature of our proposal is that it uses two (foreground and background) input distributions, which increases the robustness compared to previous studies. To achieve this, we formulated a new mathematical model that describes the consistencies between the two input distributions and the segmentation, in which weighting parameters for the two distribution matching terms are set to be approximately proportional to the size of the foreground and background areas. We call this dual distribution matching (DDM). We also derived an optimization method that uses graph cuts. Experimental results that show the effectiveness of our method and comparisons between local and global consistency measures are presented.

References Powered by Scopus

An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision

3986Citations
N/AReaders
Get full text

What Energy Functions Can Be Minimized via Graph Cuts?

2581Citations
N/AReaders
Get full text

GrabCut - Interactive foreground extraction using iterated graph cuts

1680Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Distribution Matching with the Bhattacharyya Similarity: A Bound Optimization Framework

19Citations
N/AReaders
Get full text

Superdifferential cuts for binary energies

7Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Taniai, T., Pham, V. Q., Takahashi, K., & Naemura, T. (2012). Image segmentation using dual distribution matching. In BMVC 2012 - Electronic Proceedings of the British Machine Vision Conference 2012. British Machine Vision Association, BMVA. https://doi.org/10.5244/C.26.74

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 12

92%

Researcher 1

8%

Readers' Discipline

Tooltip

Computer Science 12

80%

Engineering 2

13%

Design 1

7%

Save time finding and organizing research with Mendeley

Sign up for free