As the pervasive, standardized format for interchange and deposition of raw mass spectrometry (MS) proteomics and metabolomics data, text-based mzML is inefficiently utilized on various analysis platforms due to its sheer volume of samples and limited read/write speed. Most research on compression algorithms rarely provides flexible random file reading scheme. Database-developed solution guarantees the efficiency of random file reading, but nevertheless the efforts in compression and third-party software support are insufficient. Under the premise of ensuring the efficiency of decompression, we propose an encoding scheme “Stack-ZDPD” that is optimized for storage of raw MS data, designed for the format “Aird”, a computation-oriented format with fast accessing and decoding time, where the core compression algorithm is “ZDPD”. Stack-ZDPD reduces the volume of data stored in mzML format by around 80% or more, depending on the data acquisition pattern, and the compression ratio is approximately 30% compared to ZDPD for data generated using Time of Flight technology. Our approach is available on AirdPro, for file conversion and the Java-API Aird-SDK, for data parsing.
CITATION STYLE
Wang, J., Lu, M., Wang, R., An, S., Xie, C., & Yu, C. (2022). StackZDPD: a novel encoding scheme for mass spectrometry data optimized for speed and compression ratio. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-09432-1
Mendeley helps you to discover research relevant for your work.