The presence in plasma of an electronegative LDL subfraction [LDL(-)] cytotoxic for endothelial cells (ECs) has been reported. We studied the effect of LDL(-) on the release by ECs of molecules implicated in leukocyte recruitment [interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1)] and in the plasminogen activator inhibitor-1 (PAI-1). LDL(-), isolated by anion-exchange chromatography, differed from nonelectronegative LDL [LDL(+)] in its higher triglyceride, nonesterified fatty acid, apoprotein E and apoprotein C-III, and sialic acid contents. No evidence of extensive oxidation was found in LDL(-); its antioxidant and thiobarbituric acid-reactive substances contents were similar to those of LDL(+). However, conjugated dienes were increased in LDL(-), which suggests that mild oxidation might affect these particles. LDL(-) increased, in a concentration-dependent manner, the release of IL-8 and MCP-1 by ECs and was a stronger inductor of both chemokines than oxidized LDL (oxLDL) or LDL(+). PAI-1 release increased slightly in ECs incubated with both LDL(-) and oxLDL but not with LDL(+). However, no cytotoxic effects of LDL(-) were observed on ECs. Actinomycin D inhibited the release of IL-8 and MCP-1 induced by LDL(-) and oxLDL by up to 80%, indicating that their production is mediated by protein synthesis. Incubation of ECs with N-acetyl cysteine inhibited production of IL-8 and MCP-1 induced by LDL(-) and oxLDL by >50%. The free radical scavenger butylated hydroxytoluene slightly inhibited the effect of oxLDL but did not modify the effect of LDL(-). An antagonist (BN-50730) of the platelet-activating factor receptor inhibited production of both chemokines by LDL(-) and oxLDL in a concentration-dependent manner. Our results indicate that LDL(-) shows proinflammatory activity on ECs and may contribute to early atherosclerotic events.
CITATION STYLE
De Castellarnau, C., Sánchez-Quesada, J. L., Benítez, S., Rosa, R., Caveda, L., Vila, L., & Ordóñez-Llanos, J. (2000). Electronegative LDL from normolipemic subjects induces IL-8 and monocyte chemotactic protein secretion by human endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(10), 2281–2287. https://doi.org/10.1161/01.atv.20.10.2281
Mendeley helps you to discover research relevant for your work.