Cell division is controlled through cooperation of different kinases. Of these, polo-like kinase 1 (Plk1) and p90 ribosomal S6 kinase 1 (RSK1) play key roles. Plk1 acts as a G2/M trigger, and RSK1 promotes G1 progression. Although previous reports show that Plk1 is suppressed by RSK1 during meiosis in Xenopus oocytes, it is still not clear whether this is the case during mitosis or whether Plk1 counteracts the effects of RSK1. Few animal models are available for the study of controlled and transient cell cycle arrest. Here we show that encysted embryos (cysts) of the primitive crustacean Artemia are ideal for such research because they undergo complete cell cycle arrest when they enter diapause (a state of obligate dormancy). We found that Plk1 suppressed the activity of RSK1 during embryonic mitosis and that Plk1 was inhibited during embryonic diapause and mitotic arrest. In addition, studies on HeLa cells using Plk1 siRNA interference and overexpression showed that phosphorylation of RSK1 increased upon interference and decreased after overexpression, suggesting that Plk1 inhibits RSK1. Taken together, these findings provide insights into the regulation of Plk1 during cell division and Artemia diapause cyst formation and the correlation between the activity of Plk1 and RSK1. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Li, R., Chen, D. F., Zhou, R., Jia, S. N., Yang, J. S., Clegg, J. S., & Yang, W. J. (2012). Involvement of polo-like kinase 1 (Plk1) in mitotic arrest by inhibition of mitogen-activated protein kinase-extracellular signal-regulated kinase-ribosomal S6 kinase 1 (MEK-ERK-RSK1) cascade. Journal of Biological Chemistry, 287(19), 15923–15934. https://doi.org/10.1074/jbc.M111.312413
Mendeley helps you to discover research relevant for your work.