Most platelet membrane proteins are modified by mucin-type core 1-derived glycans (O-glycans). However, the biological importance of O-glycans in platelet clearance is unclear. Here, we generated mice with a hematopoietic cell-specific loss of O-glycans (HC C1galt1−/−). These mice lack O-glycans on platelets and exhibit reduced peripheral platelet numbers. Platelets from HC C1galt1−/− mice show reduced levels of α-2,3-linked sialic acids and increased accumulation in the liver relative to wild-type platelets. The preferential accumulation of HC C1galt1−/− platelets in the liver was reduced in mice lacking the hepatic asialoglycoprotein receptor [Ashwell–Morell receptor (AMR)]. However, we found that Kupffer cells are the primary cells phagocytosing HC C1galt1−/− platelets in the liver. Our results demonstrate that hepatic AMR promotes preferential adherence to and phagocytosis of desialylated and/or HC C1galt1−/− platelets by the Kupffer cell through its C-type lectin receptor CLEC4F. These findings provide insights into an essential role for core 1 O-glycosylation of platelets in their clearance in the liver.
CITATION STYLE
Li, Y., Fu, J., Ling, Y., Yago, T., McDaniel, J. M., Song, J., … Xia, L. (2017). Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells. Proceedings of the National Academy of Sciences of the United States of America, 114(31), 8360–8365. https://doi.org/10.1073/pnas.1707662114
Mendeley helps you to discover research relevant for your work.