Isolation and characterization of centromeric repetitive DNA sequences in Saccharum spontaneum

28Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sugarcane (Saccharum hybrids spp.) is the most important sugar crop that accounts for ∼75% of the world's sugar production. Recently, a whole-genome sequencing project was launched on the wild species S. spontaneum. To obtain information on the DNA composition of the repeat-enriched region of the centromere, we conducted a genome-wide analysis of the DNA sequences associated with CenH3 (a mutant of histone H3 located in eukaryote centromeres) using chromatin immunoprecipitation followed by sequencing (ChIP-seq) method. We demonstrate that the centromeres contain mainly SCEN-like single satellite repeat (Ss1) and several Ty3/gypsy retrotransposon-related repeats (Ss166, Ss51, and Ss68). Ss1 dominates in the centromeric regions and spans up to 500 kb. In contrast, the Ty3/gypsy retrotransposon-related repeats are either clustered spanning over a short range, or dispersed in the centromere regions. Interestingly, Ss1 exhibits a chromosome-specific enrichment in the wild species S. spontaneum and S. robustum, but not in the domesticated species S. officinarum and modern sugarcane cultivars. This finding suggests an autopolyploid genome identity of S. spontaneum with a high level of homology among its eight sub-genomes. We also conducted a genome-wide survey of the repetitive DNAs in S. spontaneum following a similarity-based sequence clustering strategy. These results provide insight into the composition of sugarcane genome as well as the genome assembly of S. spontaneum.

Cite

CITATION STYLE

APA

Zhang, W., Zuo, S., Li, Z., Meng, Z., Han, J., Song, J., … Wang, K. (2017). Isolation and characterization of centromeric repetitive DNA sequences in Saccharum spontaneum. Scientific Reports, 7. https://doi.org/10.1038/srep41659

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free