Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning

36Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.

Cite

CITATION STYLE

APA

Frandsen, B. A., Liu, L., Cheung, S. C., Guguchia, Z., Khasanov, R., Morenzoni, E., … Uemura, Y. J. (2016). Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning. Nature Communications, 7. https://doi.org/10.1038/ncomms12519

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free