Geometrical illusions are not always where you think they are: A review of some classical and less classical illusions, and ways to describe them

28Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

Abstract

Geometrical illusions are known through a small core of classical illusions that were discovered in the second half of the nineteenth century. Most experimental studies and most theoretical discussions revolve around this core of illusions, as though all other illusions were obvious variants of these. Yet, many illusions, mostly described by German authors at the same time or at the beginning of the twentieth century have been forgotten and are awaiting their rehabilitation. Recently, several new illusions were discovered, mainly by Italian authors, and they do not seem to take place into any current classification. Among the principles that are invoked to explain the illusions, there are principles relating to the metric aspects (contrast, assimilation, shrinkage, expansion, attraction of parallels) principles relating to orientations (regression to right angles, orthogonal expansion) or, more recently, to gestalt effects. Here, metric effects are discussed within a measurement framework, in which the geometric illusions are the outcome of a measurement process. There would be a main "convexity” bias in the measures: the measured value m(x) of an extant x would grow more than proportionally with x. This convexity principle, completed by a principle of compromise for conflicting measures can replace, for a large number of patterns, both the assimilation and the contrast effects. We know from evolutionary theory that the most pertinent classification criteria may not be the most salient ones (e.g., a dolphin is not a fish). In order to obtain an objective classification of illusions, I initiated with Kevin O'Regan systematic work on "orientation profiles” (describing how the strength of an illusion varies with its orientation in the plane). We showed first that the Zollner illusion already exists at the level of single stacks, and that it does not amount to a rotation of the stacks. Later work suggested that it is best described by an "orthogonal expansion”—an expansion of the stacks applied orthogonally to the oblique segments of the stacks, generating an apparent rotation effect. We showed that the Poggendorff illusion was mainly a misangulation effect. We explained the hierarchy of the illusion magnitudes found among variants of the Poggendorff illusion by the existence of control devices that counteract the loss of parallelism or the loss of collinearity produced by the biased measurements. I then studied the trapezium illusion. The oblique sides, but not the bases, were essential to the trapezium illusion, suggesting the existence of a common component between the trapezium and the Zollner illusion. Unexpectedly, the trapeziums sometimes appeared as twisted surfaces in 3d. It also appeared impossible, using a nulling procedure, to make all corresponding sides of two trapeziums simultaneously equal. The square-diamond illusion is usually presented with one apex of the diamond pointing toward the square. I found that when the figures were displayed more symmetrically, the illusion was significantly reduced. Furthermore, it is surpassed, for all subjects, by an illusion that goes in the opposite direction, in which the diagonal of a small diamond is underestimated with respect to the side of a larger square. In general, the experimental work generated many unexpected results. Each illusory stimulus was compared to a number of control variants, and often, I measured larger distortions in a variant than in the standard stimulus. In the Discussion, I will stress what I think are the main ordering principle in the metric and the orientation domains for illusory patterns. The convexity bias principle and the orthogonal expansion principles help to establish unsuspected links between apparently unrelated stimuli, and reduce their apparently extreme heterogeneity. However, a number of illusions (e.g., those of the twisted cord family, or the Poggendorff illusions) remain unpredicted by the above principles. Finally, I will develop the idea that the brain is constructing several representations, and the one that is commonly used for the purpose of shape perception generates distortions inasmuch as it must satisfy a number of conflicting constraints, such as the constraint of producing a stable shape despite the changing perspectives produced by eye movements.

Cite

CITATION STYLE

APA

Ninio, J. (2014). Geometrical illusions are not always where you think they are: A review of some classical and less classical illusions, and ways to describe them. Frontiers in Human Neuroscience, 8(October). https://doi.org/10.3389/fnhum.2014.00856

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free