For the analysis of medical images, one of the most basic methods is to diagnose diseases by examining blood smears through a microscope to check the morphology, number, and ratio of red blood cells and white blood cells. Therefore, accurate segmentation of blood cell images is essential for cell counting and identification. The aim of this paper is to perform blood smear image segmentation by combining neural ordinary differential equations (NODEs) with U-Net networks to improve the accuracy of image segmentation. In order to study the effect of ODE-solve on the speed and accuracy of the network, the ODE-block module was added to the nine convolutional layers in the U-Net network. Firstly, blood cell images are preprocessed to enhance the contrast between the regions to be segmented; secondly, the same dataset was used for the training set and testing set to test segmentation results. According to the experimental results, we select the location where the ordinary differential equation block (ODE-block) module is added, select the appropriate error tolerance, and balance the calculation time and the segmentation accuracy, in order to exert the best performance; finally, the error tolerance of the ODE-block is adjusted to increase the network depth, and the training NODEs-UNet network model is used for cell image segmentation. Using our proposed network model to segment blood cell images in the testing set, it can achieve 95.3% pixel accuracy and 90.61% mean intersection over union. By comparing the U-Net and ResNet networks, the pixel accuracy of our network model is increased by 0.88% and 0.46%, respectively, and the mean intersection over union is increased by 2.18% and 1.13%, respectively. Our proposed network model improves the accuracy of blood cell image segmentation and reduces the computational cost of the network.
CITATION STYLE
Li, D., Tang, P., Zhang, R., Sun, C., Li, Y., Qian, J., … Zhang, L. (2021). Robust Blood Cell Image Segmentation Method Based on Neural Ordinary Differential Equations. Computational and Mathematical Methods in Medicine, 2021. https://doi.org/10.1155/2021/5590180
Mendeley helps you to discover research relevant for your work.