Challenges and opportunities for hydrogen production from microalgae

124Citations
Citations of this article
259Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The global population is predicted to increase from ~7.3 billion to over 9 billion people by 2050. Together with rising economic growth, this is forecast to result in a 50% increase in fuel demand, which will have to be met while reducing carbon dioxide (CO2 ) emissions by 50-80% to maintain social, political, energy and climate security. This tension between rising fuel demand and the requirement for rapid global decarbonization highlights the need to fast-track the coordinated development and deployment of efficient cost-effective renewable technologies for the production of CO2 neutral energy. Currently, only 20% of global energy is provided as electricity, while 80% is provided as fuel. Hydrogen (H2 ) is the most advanced CO2 -free fuel and provides a 'common' energy currency as it can be produced via a range of renewable technologies, including photovoltaic (PV), wind, wave and biological systems such as microalgae, to power the next generation of H2 fuel cells. Microalgae production systems for carbon-based fuel (oil and ethanol) are now at the demonstration scale. This review focuses on evaluating the potential of microalgal technologies for the commercial production of solar-driven H2 from water. It summarizes key global technology drivers, the potential and theoretical limits of microalgal H2 production systems, emerging strategies to engineer next-generation systems and how these fit into an evolving H2 economy.

Cite

CITATION STYLE

APA

Oey, M., Sawyer, A. L., Ross, I. L., & Hankamer, B. (2016, July 1). Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnology Journal. Blackwell Publishing Ltd. https://doi.org/10.1111/pbi.12516

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free