In order to mitigate the negative effects of global climate change, the Chinese government has committed to achieving peak carbon emissions by 2030 and carbon neutrality by 2060. Since municipal cities are the bottom administrative level for drawing up development plans, it is necessary and important to conduct decarbonization pathway research on municipal energy systems (MESs). However, there is little research on decarbonization at the municipal level, and the impact of development paths in each forecast scenario is mostly based on expert evaluation and qualitative assessment. Therefore, this study established a complete decarbonization framework for MESs, including general research procedures, models, and a sustainable evaluation method. The models of energy consumption and carbon emission were adapted and improved for MESs. In order to quantitatively evaluate the energy system development for each scenario, we proposed an energy–economy–environment–security (3E–S) evaluation method, in which principal component analysis (PCA) was adopted for multi-criterion decision making. According to the analysis results of the case city in Guangdong, this evaluation method was proved to be an effective way to identify the factors that may influence coordinated development. By adjusting the relevant parameters and factors in the model, the optimal decarbonization pathway can be found to promote sustainable and coordinated development, thus helping government decision makers to quantitatively evaluate planning paths.
CITATION STYLE
Chen, W., Wang, Y., Zhang, J., Dou, W., & Jiao, Y. (2022). Planning and Energy–Economy–Environment–Security Evaluation Methods for Municipal Energy Systems in China under Targets of Peak Carbon Emissions and Carbon Neutrality. Energies, 15(19). https://doi.org/10.3390/en15197443
Mendeley helps you to discover research relevant for your work.