OBJECTIVE: Artificial intelligence (AI) provides people and professionals working in the field of participatory health informatics an opportunity to derive robust insights from a variety of online sources. The objective of this paper is to identify current state of the art and application areas of AI in the context of participatory health. METHODS: A search was conducted across seven databases (PubMed, Embase, CINAHL, PsychInfo, ACM Digital Library, IEEExplore, and SCOPUS), covering articles published since 2013. Additionally, clinical trials involving AI in participatory health contexts registered at clinicaltrials.gov were collected and analyzed. RESULTS: Twenty-two articles and 12 trials were selected for review. The most common application of AI in participatory health was the secondary analysis of social media data: self-reported data including patient experiences with healthcare facilities, reports of adverse drug reactions, safety and efficacy concerns about over-the-counter medications, and other perspectives on medications. Other application areas included determining which online forum threads required moderator assistance, identifying users who were likely to drop out from a forum, extracting terms used in an online forum to learn its vocabulary, highlighting contextual information that is missing from online questions and answers, and paraphrasing technical medical terms for consumers. CONCLUSIONS: While AI for supporting participatory health is still in its infancy, there are a number of important research priorities that should be considered for the advancement of the field. Further research evaluating the impact of AI in participatory health informatics on the psychosocial wellbeing of individuals would help in facilitating the wider acceptance of AI into the healthcare ecosystem.
CITATION STYLE
Denecke, K., Gabarron, E., Grainger, R., Konstantinidis, S. T., Lau, A., Rivera-Romero, O., … Merolli, M. (2019, August 1). Artificial Intelligence for Participatory Health: Applications, Impact, and Future Implications. Yearbook of Medical Informatics. NLM (Medline). https://doi.org/10.1055/s-0039-1677902
Mendeley helps you to discover research relevant for your work.