Using matched molecular series as a predictive tool to optimize biological activity

53Citations
Citations of this article
203Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A matched molecular series is the general form of a matched molecular pair and refers to a set of two or more molecules with the same scaffold but different R groups at the same position. We describe Matsy, a knowledge-based method that uses matched series to predict R groups likely to improve activity given an observed activity order for some R groups. We compare the Matsy predictions based on activity data from ChEMBLdb to the recommendations of the Topliss tree and carry out a large scale retrospective test to measure performance. We show that the basis for predictive success is preferred orders in matched series and that this preference is stronger for longer series. The Matsy algorithm allows medicinal chemists to integrate activity trends from diverse medicinal chemistry programs and apply them to problems of interest as a Topliss-like recommendation or as a hypothesis generator to aid compound design. © 2014 American Chemical Society.

Cite

CITATION STYLE

APA

O’Boyle, N. M., Boström, J., Sayle, R. A., & Gill, A. (2014). Using matched molecular series as a predictive tool to optimize biological activity. Journal of Medicinal Chemistry, 57(6), 2704–2713. https://doi.org/10.1021/jm500022q

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free