The role of 15-lipoxygenase in disruption of the peroxisomal membrane and in programmed degradation of peroxisomes in normal rat liver

46Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Our earlier electron microscopic observations revealed that prolonged exposure of glutaraldehyde-fixed rat liver sections to buffer solutions induced focal membrane disruptions of peroxisomes with catalase diffusion as shown cytochemically. Recently, it was suggested that 15-lipoxygenase (15-lox) might be involved in natural degradation of membrane-bound organelles in reticulocytes by integrating into and permeabilizing the organelle membranes, leading to the release of matrix proteins. We have now investigated the localization of 15-lox and its role in degradation of peroxisomal membranes in rat liver. Aldehyde-fixed liver slices were incubated in a medium that conserved the 15-LOX activity, consisting of 50 mM HEPES-KOH buffer (pH 7.4), 5 mM mercaptoethanol, 1 mM MgCl2, 15 mM NaN3, and 0.2 M sucrose, in presence or absence of 0.5-0.05 mM propyl gallate or esculetin, two inhibitors of 15-LOX. The exposure of aldehyde-fixed liver sections to this medium induced focal disruptions of peroxisome membranes and catalase diffusion around some but not all peroxisomes. This was significantly reduced by both 15-LOX inhibitors, propyl gallate and esculetin, with the latter being more effective. Double immunofluorescent staining for 15-LOX and catalase revealed that 15-LOX was co-localized with catalase in some but not all peroxisomes in rat hepatocytes. By postembedding immuno-electron microscopy, gold labeling was localized on membranes of some peroxisomes. These observations suggest that 15-LOX is involved in degradation of peroxisomal membranes and might have a physiological role in programmed degradation and turnover of peroxisomes in hepatocytes.

Cite

CITATION STYLE

APA

Yokota, S., Oda, T., & Fahimi, H. D. (2001). The role of 15-lipoxygenase in disruption of the peroxisomal membrane and in programmed degradation of peroxisomes in normal rat liver. Journal of Histochemistry and Cytochemistry, 49(5), 613–621. https://doi.org/10.1177/002215540104900508

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free