Structures and applications of thermoresponsive hydrogels and nanocomposite-hydrogels based on copolymers with poly (Ethylene glycol) and poly (lactide-co-glycolide) blocks

23Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

Thermoresponsive hydrogels showing biocompatibility and degradability have been under intense investigation for biomedical applications, especially hydrogels composed of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(lactic acid-co-glycolic acid) (PLGA) as first-line materials. Even though various aspects such as gelation behavior, degradation behavior, drug-release behavior, and composition effect have been studied for 20 years since the first report of these hydrogels, there are still many outputs on parameters affecting their gelation, structure, and application. In this review, the current trends of research on linear block copolymers composed of PEG and PLGA during the last 5 years (2014–2019) are summarized. In detail, this review stresses newly found parameters affecting thermoresponsive gelation, findings from structural analysis by simulation, small-angle neutron scattering (SANS), etc., progress in biomedical applications including drug delivery systems and regeneration medicine, and nanocomposites composed of block copolymers with PEG and PLGA and nanomaterials (laponite).

Cite

CITATION STYLE

APA

Maeda, T. (2019, December 1). Structures and applications of thermoresponsive hydrogels and nanocomposite-hydrogels based on copolymers with poly (Ethylene glycol) and poly (lactide-co-glycolide) blocks. Bioengineering. MDPI AG. https://doi.org/10.3390/bioengineering6040107

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free