Numerical Analysis of Heat Transfer within a Rotary Multi-Vane Expander

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

In this paper, the results of numerical investigations on heat transfer in a multi-vane expander (MVE) are reported. MVEs are very interesting for various technological applications because of their advantages (such as, for example, low gas flow capacity and a low expansion ratio). According to a literature study, the heat exchange mechanisms occurring in these machines have not yet undergone in-depth analysis. As a result, there have been very few experimental or modeling results connected to these unquestionably significant processes from both a scientific and practical perspective. Despite the fact that several analytical models have been developed for these phenomena, there is no numerical model dedicated to an MVE. This model was developed by the authors and presented in this paper together with modeling results. Numerical simulations were executed in the ANSYS CFX and focused on defining the expander heat transfer coefficients under various flow circumstances. The results showed inside heat transfer processes in MVEs and, moreover, it was discovered that, in the gap between the vane and the cylinder, there are changes in the fluid’s velocity profile.

Cite

CITATION STYLE

APA

Błasiak, P., Kolasiński, P., & Daniarta, S. (2023). Numerical Analysis of Heat Transfer within a Rotary Multi-Vane Expander. Energies, 16(6). https://doi.org/10.3390/en16062794

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free