Upon differentiation induction of 3T3-L1 preadipocytes by a hormone mixture containing 1-isobutyl-3-methylxanthine, dexamethasone, and insulin, the preadipocytes undergo ∼2 rounds of mitotic clonal expansion, which just precedes the adipogenic gene expression program and has been thought to be an essential early step for differentiation initiation. By inducing 3T3-L1 preadipocytes with each individual hormone, it was determined that the mitotic clonal expansion was induced only by insulin and not by 1-isobutyl-3-methylxanthine or dexamethasone. Cell number counting and fluorescence-activated cell-sorting analysis indicated that a significant fraction of 3T3-L1 preadipocytes differentiated into adipocytes without mitotic clonal expansion when induced with the combination of 1-isobutyl-3-methylxanthine and dexamethasone. Furthermore, when normally induced 3T3-L1 preadipocytes were treated with PD98059 (an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1) to block the activation of extracellular signal-regulated kinase (Erk) 1 and Erk2, the mitotic clonal expansion was blocked, but adipocyte differentiation was not affected. These observations were confirmed by bromodeoxyuridine labeling. The differentiated adipocytes induced with 1-isobutyl-3-methylxanthine and dexamethasone or standard hormone mixture plus PD98059 were not labeled by bromodeoxyuridine. Thus, it is evident that 3T3-L1 preadipocytes could differentiate into adipocytes without DNA synthesis and mitotic clonal expansion. Our results also suggested that activation of Erk1 and Erk2 is essential to but not sufficient for induction of mitotic clonal expansion.
CITATION STYLE
Qiu, Z., Wei, Y., Chen, N., Jiang, M., Wu, J., & Liao, K. (2001). DNA Synthesis and Mitotic Clonal Expansion Is Not a Required Step for 3T3-L1 Preadipocyte Differentiation into Adipocytes. Journal of Biological Chemistry, 276(15), 11988–11995. https://doi.org/10.1074/jbc.M011729200
Mendeley helps you to discover research relevant for your work.