The use of eye-color mutants and their corresponding genes as scorable marker systems has facilitated the development of transformation technology in Drosophila and other insects. In the red flour beetle, Tribolium castaneum, the only currently available system for germline transformation employs the exogenous marker gene, EGFP, driven by an eye-specific promoter. To exploit the advantages offered by eye-pigmentation markers, we decided to develop a transformant selection system for Tribolium on the basis of mutant rescue. The Tribolium orthologs of the Drosophila eye-color genes vermilion (tryptophan oxygenase) and cinnabar (kynurenine 3-monooxygenase) were cloned and characterized. Conceptual translations of Tc vermilion (Tcv) and Tc cinnabar (Tccn) are 71 and 51% identical to their respective Drosophila orthologs. We used RNA interference (RNAi) to show that T. castaneum larvae lacking functional Tcv or Tccn gene products also lack the pigmented eyespots observed in wild-type larvae. Five available eye-color mutations were tested for linkage to Tcv or Tccn via recombinational mapping. No linkage was found between candidate mutations and Tccn. However, tight linkage was found between Tcv and the white-eye mutation white, here renamed vermilionwhite (vw). Molecular analysis indicates that 80% of the Tcv coding region is deleted in vw beetles. These observations suggest that the Tribolium eye is pigmented only by ommochromes, not pteridines, and indicate that Tcv is potentially useful as a germline transformation marker.
CITATION STYLE
Lorenzen, M. D., Brown, S. J., Denell, R. E., & Beeman, R. W. (2002). Cloning and characterization of the Tribolium castaneum eye-color genes encoding tryptophan oxygenase and kynurenine 3-monooxygenase. Genetics, 160(1), 225–234. https://doi.org/10.1093/genetics/160.1.225
Mendeley helps you to discover research relevant for your work.