Reconciling evidence of oxidative weathering and atmospheric anoxia on Archean Earth

24Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Evidence continues to emerge for the production and low-level accumulation of molecular oxygen (O2) at Earth's surface before the Great Oxidation Event. Quantifying this early O2 has proven difficult. Here, we use the distribution and isotopic composition of molybdenum in the ancient sedimentary record to quantify Archean Mo cycling, which allows us to calculate lower limits for atmospheric O2 partial pressures (PO2) and O2 production fluxes during the Archean. We consider two end-member scenarios. First, if O2 was evenly distributed throughout the atmosphere, then PO2 > 10-6.9 present atmospheric level was required for large periods of time during the Archean eon. Alternatively, if O2 accumulation was instead spatially restricted (e.g., occurring only near the sites of O2 production), then O2 production fluxes >0.01 Tmol O2/year were required. Archean O2 levels were vanishingly low according to our calculations but substantially above those predicted for an abiotic Earth system.

Cite

CITATION STYLE

APA

Johnson, A. C., Ostrander, C. M., Romaniello, S. J., Reinhard, C. T., Greaney, A. T., Lyons, T. W., & Anbar, A. D. (2021). Reconciling evidence of oxidative weathering and atmospheric anoxia on Archean Earth. Science Advances, 7(40). https://doi.org/10.1126/sciadv.abj0108

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free