A quantum router architecture for high-fidelity entanglement flows in quantum networks

37Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The past decade has seen tremendous progress in experimentally realizing the building blocks of quantum repeaters. Repeater architectures with multiplexed quantum memories have been proposed to increase entanglement distribution rates, but an open challenge is to maintain entanglement fidelity over long-distance links. Here, we address this with a quantum router architecture comprising many quantum memories connected in a photonic switchboard to broker entanglement flows across quantum networks. We compute the rate and fidelity of entanglement distribution under this architecture using an event-based simulator, finding that the router improves the entanglement fidelity as multiplexing depth increases without a significant drop in the entanglement distribution rate. Specifically, the router permits channel-loss-invariant fidelity, i.e. the same fidelity achievable with lossless links. Furthermore, this scheme automatically prioritizes entanglement flows across the full network without requiring global network information. The proposed architecture uses present-day photonic technology, opening a path to near-term deployable multi-node quantum networks.

Cite

CITATION STYLE

APA

Lee, Y., Bersin, E., Dahlberg, A., Wehner, S., & Englund, D. (2022). A quantum router architecture for high-fidelity entanglement flows in quantum networks. Npj Quantum Information, 8(1). https://doi.org/10.1038/s41534-022-00582-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free