Structure-function analysis of microRNA 3′-end trimming by Nibbler

9Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Nibbler (Nbr) is a 3′-to-5′ exoribonuclease whose catalytic 3′-end trimming activity impacts microRNA (miRNA) and PIWI-interacting RNA (piRNA) biogenesis. Here, we report on structural and functional studies to decipher the contributions of Nbr’s N-terminal domain (NTD) and exonucleolytic domain (EXO) in miRNA 3′-end trimming. We have solved the crystal structures of the NTD core and EXO domains of Nbr, both in the apo-state. The NTD-core domain of Aedes aegypti Nbr adopts a HEAT-like repeat scaffold with basic patches constituting an RNA-binding surface exhibiting a preference for binding double-strand RNA (dsRNA) over single-strand RNA (ssRNA). Structure-guided functional assays in Drosophila S2 cells confirmed a principal role of the NTD in exonucleolytic miRNA trimming, which depends on basic surface patches. Gain-of-function experiments revealed a potential role of the NTD in recruiting Nbr to Argonaute-bound small RNA substrates. The EXO domain of A. aegypti and Drosophila melanogaster Nbr adopt a mixed α/β-scaffold with a deep pocket lined by a DEDDy catalytic cleavage motif. We demonstrate that Nbr’s EXO domain exhibits Mn2+-dependent ssRNA-specific 3′-to-5′ exoribonuclease activity. Modeling of a 3′ terminal Uridine into the catalytic pocket of Nbr EXO indicates that 2′-O-methylation of the 3′-U would result in a steric clash with a tryptophan side chain, suggesting that 2′-O-methylation protects small RNAs from Nbr-mediated trimming. Overall, our data establish that Nbr requires its NTD as a substrate recruitment platform to execute exonucleolytic miRNA maturation, catalyzed by the ribonuclease EXO domain.

Cite

CITATION STYLE

APA

Xie, W., Sowemimo, I., Hayashi, R., Wang, J., Burkard, T. R., Brennecke, J., … Patel, D. J. (2020). Structure-function analysis of microRNA 3′-end trimming by Nibbler. Proceedings of the National Academy of Sciences of the United States of America, 117(48), 30370–30379. https://doi.org/10.1073/pnas.2018156117

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free