Quantitative, titratable and high-throughput reporter assays to measure DNA double strand break repair activity in cells

2Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Repair of DNA damage is essential for the maintenance of genome stability and cell viability. DNA double strand breaks (DSBs) constitute a toxic class of DNA lesion and multiple cellular pathways exist to mediate their repair. Robust and titratable assays of cellular DSB repair (DSBR) are important to functionally interrogate the integrity and efficiency of these mechanisms in disease models as well as in response to genetic or pharmacological perturbations. Several variants of DSBR reporters are available, however these are often limited by throughput or restricted to specific cellular models. Here, we describe the generation and validation of a suite of extrachromosomal reporter assays that can efficiently measure the major DSBR pathways of homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single strand annealing (SSA). We demonstrate that these assays can be adapted to a high-throughput screening format and that they are sensitive to pharmacological modulation, thus providing mechanistic and quantitative insights into compound potency, selectivity, and on-target specificity. We propose that these reporter assays can serve as tools to dissect the interplay of DSBR pathway networks in cells and will have broad implications for studies of DSBR mechanisms in basic research and drug discovery.

Cite

CITATION STYLE

APA

Rajendra, E., Grande, D., Mason, B., Marcantonio, D. D., Armstrong, L., Hewitt, G., … Robinson, H. M. R. (2024). Quantitative, titratable and high-throughput reporter assays to measure DNA double strand break repair activity in cells. Nucleic Acids Research, 52(4), 1736–1752. https://doi.org/10.1093/nar/gkad1196

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free