Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2

24Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The aim of this paper was to describe the effect of various metal ions on the activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. We also compared activity of different dioxygenases isolated from this strain, in the presence of metal ions, after induction by various aromatic compounds. S. maltophilia KB2 degraded 13 mM 3,4-dihydroxybenzoate, 10 mM benzoic acid and 12 mM phenol within 24 h of incubation. In the presence of dihydroxybenzoate and benzoate, the activity of protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase was observed. Although Fe3+, Cu2+, Zn2+, Co2+, Al3+, Cd2+, Ni2+ and Mn2+ ions caused 20-80 % inhibition of protocatechuate 3,4-dioxygenase activity, the above-mentioned metal ions (with the exception of Ni2+) inhibited catechol 1,2-dioxygenase to a lesser extent or even activate the enzyme. Retaining activity of at least one of three dioxygenases from strain KB2 in the presence of metal ions makes it an ideal bacterium for bioremediation of contaminated areas. © 2012 The Author(s).

Cite

CITATION STYLE

APA

Guzik, U., Hupert-Kocurek, K., Sałek, K., & Wojcieszyńska, D. (2013). Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. World Journal of Microbiology and Biotechnology, 29(2), 267–273. https://doi.org/10.1007/s11274-012-1178-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free