The prediction of interresidue contacts and distances from coevolutionary data using deep learning has considerably advanced protein structure prediction. Here, we build on these advances by developing a deep residual network for predicting interresidue orientations, in addition to distances, and a Rosetta-constrained energy-minimization protocol for rapidly and accurately generating structure models guided by these restraints. In benchmark tests on 13th Community-Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP13)- and Continuous Automated Model Evaluation (CAMEO)-derived sets, the method outperforms all previously described structureprediction methods. Although trained entirely on native proteins, the network consistently assigns higher probability to de novodesigned proteins, identifying the key fold-determining residues and providing an independent quantitative measure of the "ideality" of a protein structure. The method promises to be useful for a broad range of protein structure prediction and design problems.
CITATION STYLE
Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., & Baker, D. (2020). Improved protein structure prediction using predicted interresidue orientations. Proceedings of the National Academy of Sciences of the United States of America, 117(3), 1496–1503. https://doi.org/10.1073/pnas.1914677117
Mendeley helps you to discover research relevant for your work.