N-Heterocyclic Carbenes in Organocatalysis

  • Campbell C
  • Ling K
  • Smith A
N/ACitations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Cover -- Title Page -- Copyright -- Contents -- Preface -- Discovery of Catalysis by Nucleophilic Carbenes -- About the Editor -- Chapter 1 An Overview of NHCs -- 1.1 General Structure of NHCs -- 1.1.1 Classes of NHCs and Related Stable Carbenes -- 1.1.2 Structural Features Common to All NHCs -- 1.1.3 Stabilization of the Carbene Center -- 1.2 NHCs as --Donating Ligands -- 1.2.1 The Nature of Bonding in NHC Adducts -- 1.2.2 Comparing NHC and Phosphine Ligands -- 1.3 Synthesis of NHCs -- 1.3.1 Generation of the Free Carbene -- 1.3.2 Synthetic Routes Toward Azolium Salt NHC Precursors -- 1.4 Quantifying the Electronic Properties of NHCs -- 1.4.1 pKa Measurements of Azolium Salts -- 1.4.2 Tolman Electronic Parameter (TEP) -- 1.4.3 NMR Measurements -- 1.4.4 Nucleophilicity and Lewis Basicity -- 1.4.5 Electrochemical Methods -- 1.4.6 Computational Methods -- 1.5 Quantifying the Steric Properties of NHCs -- 1.5.1 Percentage Buried Volume (%Vbur) -- 1.5.2 Steric Maps -- 1.6 Concluding Remarks -- References -- Chapter 2 Benzoin Reaction -- 2.1 Background and Mechanism -- 2.2 Standard Conditions and Substrate Scope -- 2.3 Enantioselective Homo--benzoin Reactions -- 2.4 Cross--benzoin Reactions -- 2.4.1 Intramolecular Cross--benzoin Reactions -- 2.4.2 Intermolecular Cross--benzoin Reactions -- 2.5 Aza--benzoin Reactions -- 2.5.1 Aza--benzoin Reactions of Aldimines -- 2.5.2 Aza--benzoin Reactions of Ketimines -- References -- Chapter 3 N--Heterocyclic Carbene--catalyzed Stetter Reaction and Related Chemistry -- 3.1 Introduction -- 3.2 Proposed Mechanism of the Stetter Reaction -- 3.3 Intramolecular Stetter Reaction -- 3.4 Intermolecular Stetter Reaction -- 3.5 Cascade Processes Involving Stetter Reaction -- 3.6 NHC--catalyzed Hydroacylation Reactions -- 3.7 Conclusion -- References Chapter 4 N--Heterocyclic Carbene (NHC)--Mediated Generation and Reactions of Homoenolates -- 4.1 Homoenolates~-~An Introduction -- 4.2 N--Heterocyclic Carbenes (NHCs) -- 4.3 NHC--Derived Homoenolates~-~The Beginning -- 4.4 Mechanistic Pathways Available for NHC--Homoenolates -- 4.5 Reaction of NHC--Homoenolates with Ketones and Ketimines -- 4.6 Reaction of NHC--Homoenolates with Michael Acceptors -- 4.7 \textgreek{b}--Protonation of Homoenolates and Subsequent Reactions -- 4.8 Homoenolates in Carbon-Nitrogen Bond Formation -- 4.9 Domino Reactions of Homoenolates -- 4.10 New Precursors for Homoenolates -- 4.11 Conclusion -- References -- Chapter 5 Domino Processes in NHC Catalysis -- 5.1 Introduction -- 5.2 Domino Reactions Involving Homoenolate-Enolate Intermediates -- 5.2.1 Domino Reactions Involving a Michael/Aldol Reaction Sequence -- 5.2.2 Domino Reactions Involving a Michael/Michael Reaction Sequence -- 5.2.3 Domino Reactions Involving a Michael/Mannich Reaction Sequence -- 5.2.4 Domino Reactions Involving a Homo--aldol/Michael Addition Sequence -- 5.3 Domino Reactions Involving Dienolate-Enolate Intermediates -- 5.4 Domino Reactions Involving Unsaturated Acyl Azolium-Enolate Intermediates -- 5.4.1 Domino Reactions Involving a Michael/Aldol Sequence -- 5.4.2 Domino Reactions Involving a Michael/Michael Addition Sequence -- 5.4.3 Domino Reactions Involving a Michael/Mannich Reaction Sequence -- 5.4.4 Domino Reactions Involving a Michael/SN2 Reaction Sequence -- 5.5 Conclusions and Outlook -- References -- Chapter 6 N--Heterocyclic Carbene Catalysis via the \textgreek{a},\textgreek{b}--Unsaturated Acyl Azolium -- 6.1 Introduction -- 6.2 Generation of the \textgreek{a},\textgreek{b}--Unsaturated Acyl Azolium -- 6.3 Esterification of the \textgreek{a},\textgreek{b}--Unsaturated Acyl Azolium -- 6.4 [3+n] Annulations of the \textgreek{a},\textgreek{b}--Unsaturated Acyl Azolium -- 6.4.1 Annulation with Enolates -- 6.4.2 Annulation with Enamines 6.4.3 Annulation with Other Nucleophiles -- 6.5 [2+n] Annulations of the \textgreek{a},\textgreek{b}--Unsaturated Acyl Azolium -- 6.5.1 [2+4] Annulations Terminating in \textgreek{b}--Lactonization -- 6.5.2 [2+4] Annulations Terminating in \textgreek{d}--Lactonization -- 6.5.3 [2+3] Annulations Terminating in \textgreek{b}--Lactonization -- 6.5.4 [2+1] Annulations -- 6.6 Cascades Involving Bond Formation at the \textgreek{g}--Carbon and Acyl Carbon -- 6.6.1 Annulations with Ketones and Imines -- 6.6.2 [4+2] Annulations with Electron--Poor Olefins -- 6.7 Other Reactions of the \textgreek{a},\textgreek{b}--Unsaturated Acyl Azolium -- 6.8 Conclusions and Outlook -- References -- Chapter 7 Recent Activation Modes in NHC Organocatalysis -- 7.1 Introduction -- 7.2 Activation of Carboxylic Acid Derivatives -- 7.2.1 \textgreek{a}--Carbon Activation of Saturated Carboxylic Esters -- 7.2.2 \textgreek{b}--Carbon Activation of \textgreek{a},\textgreek{b}--Unsaturated Carboxylic Compounds -- 7.2.3 Nucleophilic \textgreek{b}--Carbon Activation of Saturated Carboxylic Esters -- 7.2.4 \textgreek{g}--Carbon Activation of \textgreek{a},\textgreek{b}--Unsaturated Carboxylic Esters -- 7.3 Radical Reactions Catalyzed by NHC Organic Catalysts -- 7.3.1 Lessons from Nature -- 7.3.2 Pioneering SET Reactions in NHC Organocatalysis -- 7.3.3 NHC--Catalyzed Reductive \textgreek{b},\textgreek{b}--couplings of Nitroalkenes -- 7.3.4 NHC--Catalyzed Benzylation of Electrophiles -- 7.3.5 NHC--Catalyzed \textgreek{b}--hydroxylation of \textgreek{a},\textgreek{b}--Unsaturated Aldehydes -- 7.3.6 Synthesis of Chiral 3,4--diaryl Cyclopentanones Through SET Process -- 7.3.7 Polyhalides as Oxidants for NHC--Catalyzed Radical Reactions -- 7.3.8 New Mechanisms for Classical Reactions -- 7.4 Summary and Outlook into the Future NHC Organocatalysis -- References -- Chapter 8 N--Heterocyclic Carbene--Catalyzed Reactions via Azolium Enolates and Dienolates -- 8.1 Introduction -- 8.2 Azolium Enolates from \textgreek{a}--Functionalized Aldehydes -- 8.2.1 Synthesis of Carboxylic Compounds -- 8.2.2 Formal [2+4] Cycloaddition -- 8.2.3 Formal [2+2] Cycloaddition 8.2.4 Formal [2+3] Cycloaddition -- 8.3 Azolium Enolate from Ketenes -- 8.3.1 Formal [2+2] Cycloaddition -- 8.3.2 Asymmetric Formal [2+3] Cycloadditions -- 8.3.3 Asymmetric Formal [2+4] Cycloadditions -- 8.3.4 Asymmetric Protonation and Halogenation -- 8.4 Azolium Enolate from Enals -- 8.5 Azolium Enolate from Aldehydes with Oxidant -- 8.6 Azolium Enolates from Activated Esters -- 8.7 Azolium Enolates from Acids -- 8.8 Azolium Dienolate -- 8.9 Conclusions and Outlook -- References -- Chapter 9 N--Heterocyclic Carbenes as Brønsted Base Catalysts -- References -- Chapter 10 NHC--Catalyzed Kinetic Resolution, Desymmetrization, and DKR Strategies -- 10.1 Introduction -- 10.2 NHC--Catalyzed Acylation -- 10.2.1 Acylation of Aliphatic Alcohols -- 10.2.1.1 Acylation of Aliphatic Alcohols -- 10.2.1.2 DKR Involving Acylation of Alcohols -- 10.2.2 Acylation of Phenols -- 10.2.3 Acylation of Amines and Sulfoximines -- 10.3 Benzoin and Stetter Reactions -- 10.3.1 Desymmetrization of Achiral Substrates -- 10.3.2 DKR of Racemic Substrates via Benzoin Condensation -- 10.4 Annulation Reactions -- 10.4.1 Annulation via Azolium Enolate Addition -- 10.4.2 Annulation via Azolium Homoenolate Addition -- 10.4.3 Annulation via \textgreek{g}--Addition -- 10.5 Conclusion -- Acknowledgments -- References -- Chapter 11 N--Heterocyclic Carbenes for Organopolymerization: Metal--Free Polymer Synthesis -- 11.1 Introduction -- 11.2 Main NHCs and Fundamental Mechanisms of NHC--Induced Polymerization -- 11.3 NHC--Mediated Chain--growth Polymerization -- 11.3.1 Ring--opening Polymerization -- 11.3.2 NHC--OROP (in the Presence of an Initiator) -- 11.3.3 Directly NHC--Mediated ROP (in the Absence of an Initiator): Synthesis of Cyclic vs. Linear Polymers -- 11.4 Reaction with Alkyl (meth)acrylates -- 11.4.1 Basic Nucleophilic Reactivity of Stable Carbenes in the Absence of Initiator 11.4.1.1 Ambiphilic Reactivity of Stable Carbenes -- 11.4.1.2 Noncatalytic Reactivity -- 11.4.1.3 Catalytic Reactivity -- 11.4.2 Reactivity of NHCs Toward \textgreek{a},\textgreek{b}--Unsaturated Esters in the Presence of Initiators -- 11.4.3 Reactivity of NHCs in Conjunction with a Lewis Acid: Frustrated Lewis Pair--Type Reactivity -- 11.5 NHC--Mediated Step--growth Polymerization -- 11.6 Conclusion -- References -- Chapter 12 N--Heterocyclic Carbene Catalysis in Natural Product and Complex Target Synthesis -- 12.1 Introduction -- 12.2 NHC--Catalyzed Benzoin Condensations -- 12.2.1 Synthesis of trans--Resorcylide -- 12.2.2 Synthesis of (+)--Sappanone B -- 12.2.3 Synthesis of Cassialoin -- 12.2.4 Synthesis of the Kinamycins and the Monomeric Unit of Lomaiviticin Aglycon -- 12.2.5 Synthesis of ($-$)--Seragakinone A -- 12.2.6 Synthesis of Originally Assigned Structure of Pleospdione -- 12.2.7 Formal Synthesis of Natural Inositols -- 12.2.8 Synthesis of (+)--7,20--Diisocyanoadociane -- 12.3 The Stetter Reaction -- 12.3.1 Annulation Reactions -- 12.3.1.1 Synthesis of Hirsutic Acid C -- 12.3.1.2 Formal Synthesis of Platensimycin -- 12.3.2 Fragment Coupling -- 12.3.2.1 Synthesis of cis--Jasmon and Dihydrojasmon -- 12.3.2.2 Synthesis of the Core of Atorvastatin -- 12.3.2.3 Synthesis of Roseophilin -- 12.3.2.4 Synthesis of trans--Sabinene Hydrate -- 12.3.2.5 Synthesis of (+)--Monomorine I and Related Natural Products -- 12.3.2.6 Synthesis of Haloperidol -- 12.3.2.7 Synthesis of ($-$)--Englerin A -- 12.3.2.8 Synthesis of Piperodione -- 12.4 NHC--homoenolate Equivalents -- 12.4.1 Synthesis of Salinosporamide A -- 12.4.2 Synthesis of Bakkenolides I, J, and S -- 12.4.3 Synthesis of Maremycin B -- 12.4.4 Synthesis of Clausenamide -- 12.4.5 Synthesis of ($-$)--Paroxetine and ($-$)--Femoxetine -- 12.4.6 Synthesis of (S)--Baclofen and (S)--Rolipram -- 12.4.7 Synthesis of 3--Dehydroxy Secu'amine A 12.5 NHC--Catalyzed Aroylation Reactions

Cite

CITATION STYLE

APA

Campbell, C. D., Ling, K. B., & Smith, A. D. (2010). N-Heterocyclic Carbenes in Organocatalysis (pp. 263–297). https://doi.org/10.1007/978-90-481-2866-2_12

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free