An explicit analysis of the impact for the richness of species of the vegetation phenological characteristics calculated from various remote sensing data is critical and essential for biodiversity conversion and restoration. This study collected long-term the Normalized Difference Vegetation Index (NDVI), the Leaf Area Index (LAI), the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), and the Fractional Vegetation Cover (FVC), and calculated the six vegetation phenological characteristic parameters: the mean of the growing season, the mean of the mature season, the mean of the withered season, the annual difference value, the annual cumulative value, and the annual stan-dard deviation in the Xinjiang Uygur Autonomous Region. The relationships between the vegetation phenological characteristics and the species richness of birds and mammals were analyzed in spatial distribution. The main findings include: (1) The correlation between bird diversity and vegetation factors is greater than that of mammals. (2) For remote sensing data, FAPAR is the most important vegetation parameter for both birds and mammals. (3) For vegetation phenological characteristics, the annual cumulative value of the LAI is the most crucial vegetation phenological parameter for influencing bird diversity distribution, and the annual difference value of the NDVI is the most significant driving factor for mammal diversity distribution.
CITATION STYLE
Wu, J., Li, H., Wan, H., Wang, Y., Sun, C., & Zhou, H. (2021). Analyzing the relationship between animal diversity and the remote sensing vegetation parameters: The case of Xinjiang, China. Sustainability (Switzerland), 13(17). https://doi.org/10.3390/su13179897
Mendeley helps you to discover research relevant for your work.