Nanoscale chemical imaging with structured X-ray illumination

5Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

High-resolution imaging with compositional and chemical sensitivity is crucial for a wide range of scientific and engineering disciplines. Although synchrotron X-ray imaging through spectromicroscopy has been tremendously successful and broadly applied, it encounters challenges in achieving enhanced detection sensitivity, satisfactory spatial resolution, and high experimental throughput simultaneously. In this work, based on structured illumination, we develop a single-pixel X-ray imaging approach coupled with a generative image reconstruction model for mapping the compositional heterogeneity with nanoscale resolvability. This method integrates a full-field transmission X-ray microscope with an X-ray fluorescence detector and eliminates the need for nanoscale X-ray focusing and raster scanning. We experimentally demonstrate the effectiveness of our approach by imaging a battery sample composed of mixed cathode materials and successfully retrieving the compositional variations of the imaged cathode particles. Bridging the gap between structural and chemical characterizations using X-rays, this technique opens up vast opportunities in the fields of biology, environmental, and materials science, especially for radiation-sensitive samples.

Cite

CITATION STYLE

APA

Li, J., Chen, S., Ratner, D., Blu, T., Pianetta, P., & Liu, Y. (2023). Nanoscale chemical imaging with structured X-ray illumination. Proceedings of the National Academy of Sciences of the United States of America, 120. https://doi.org/10.1073/pnas.2314542120

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free