BACKGROUND: Bispecific T-cell engaging antibodies (BiTES), comprising dual anti-CD3 and anti-tumor antigen scFv fragments, are important therapeutic agents for the treatment of cancer. The dual scFv construct for BiTES requires proper protein folding while their small molecular size leads to rapid kidney clearance. METHODS: An intact (150 kDa) anti-tumor antigen antibody to CEA was joined in high yield (ca. 30%) to intact (150 kDa) anti-murine and anti-human CD3 antibodies using hinge region specific Click chemistry to form dual-specific, bivalent BiTES (dbBiTES, 300 kDa). dbBiTEs were tested in vitro by EM, flow cytometry and cell cytoxicity and in vivo by PET tumor imaging and redirected T-cell therapy. RESULTS: The interlocked hinge regions are compatible with a structural model that fits the electron micrographs of 300 kDa particles. Compared to intact anti-CEA antibody, dbBiTES exhibit high in vitro cytotoxicity, high in vivo tumor targeting as demonstrated by PET imaging, and redirected dbBiTE coated T-cells (1 microgram/10 million cells) that kill CEA+ target cells in vivo in CEA transgenic mice. CONCLUSION: dbBiTE redirected T-cell therapy is a promising, efficient approach for targeting and killing cancer cells.
CITATION STYLE
Kujawski, M., Li, L., Bhattacharya, S., Wong, P., Lee, W. H., Williams, L., … Shively, J. E. (2019). Generation of dual specific bivalent BiTEs (dbBIspecific T-cell engaging antibodies) for cellular immunotherapy. BMC Cancer, 19(1), 882. https://doi.org/10.1186/s12885-019-6056-8
Mendeley helps you to discover research relevant for your work.