Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein ( penetrene)

17Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. Borna disease virus (BDV) is the type member of the Bornaviridae, a family of viruses that induce often fatal neurological diseases in horses, sheep and other animals, and have been proposed to have roles in certain psychiatric diseases of humans. The BDV glycoprotein (G) is an extensively glycosylated protein that migrates with an apparent molecular mass of 84,000 to 94,000 kilodaltons (kDa). BDV G is post-translationally cleaved by the cellular subtilisin-like protease furin into two subunits, a 41 kDa amino terminal protein GP1 and a 43 kDa carboxyl terminal protein GP2. Results. Class III viral fusion proteins (VFP) encoded by members of the Rhabdoviridae, Herpesviridae and Baculoviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Proteomics computational analyses suggest that the structural/functional motifs that characterize class III VFP are located collinearly in BDV G. Structural models were established for BDV G based on the post-fusion structure of a prototypic class III VFP, vesicular stomatitis virus glycoprotein (VSV G). Conclusion. These results suggest that G encoded by members of the Bornavirdae are class III VFPs (gamma-penetrenes). © 2009 Garry and Garry; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Garry, C. E., & Garry, R. F. (2009). Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein ( penetrene). Virology Journal, 6. https://doi.org/10.1186/1743-422X-6-145

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free