Generation of three-dimensional optical cusp beams with ultrathin metasurfaces

12Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cusp beams are one type of complex structured beams with unique multiple self-accelerating channels and needle-like field structures owning great potentials to advance applications such as particle micromanipulation and super-resolution imaging. The traditional method to generate optical catastrophe is based on cumbrous reflective diffraction optical elements, which makes optical system complicated and hinders the nanophotonics integration. Here we design geometric phase based ultrathin plasmonic metasurfaces made of nanoslit antennas to produce three-dimensional (3D) optical cusp beams with variable numbers of self-accelerating channels in a broadband wavelength range. The entire beam propagation profiles of the cusp beams generated from the metasurfaces are mapped theoretically and experimentally. The special self-accelerating behavior and caustics concentration property of the cups beams are also demonstrated. Our results provide great potentials for promoting metasurface-enabled compact photonic devices used in wide applications of light-matter interactions.

Cite

CITATION STYLE

APA

Liu, W., Zhang, Y., Gao, J., & Yang, X. (2018). Generation of three-dimensional optical cusp beams with ultrathin metasurfaces. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-27895-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free