Alphaproteobacteria commonly produce an adhesin that is anchored to the exterior of the envelope at one cell pole. In Caulobacter crescentus this adhesin, known as the holdfast, facilitates attachment to solid surfaces and cell partitioning to air-liquid interfaces. An ensemble of two-component signal transduction (TCS) proteins controls C. crescentus holdfast biogenesis by indirectly regulating expression of HfiA, a potent inhibitor of holdfast synthesis. We performed a genetic selection to discover direct hfiA regulators that function downstream of the adhesion TCS system and identified rtrC, a hypothetical gene. rtrC transcription is directly activated by the adhesion TCS regulator, SpdR. Though its primary structure bears no resemblance to any defined protein family, RtrC binds and regulates dozens of sites on the C. crescentus chromosome via a pseudo-palindromic sequence. Among these binding sites is the hfiA promoter, where RtrC functions to directly repress transcription and thereby activate holdfast development. Either RtrC or SpdR can directly activate transcription of a second hfiA repressor, rtrB. Thus, environmental regulation of hfiA transcription by the adhesion TCS system is subject to control by an OR-gated type I coherent feedforward loop; these regulatory motifs are known to buffer gene expression against fluctuations in regulating signals. We have further assessed the functional role of rtrC in holdfast-dependent processes, including surface adherence to a cellulosic substrate and formation of pellicle biofilms at air-liquid interfaces. Strains harboring insertional mutations in rtrC have a diminished adhesion profile in a competitive cheesecloth binding assay and a reduced capacity to colonize pellicle biofilms in select media conditions. Our results add to an emerging understanding of the regulatory topology and molecular components of a complex bacterial cell adhesion control system.
CITATION STYLE
McLaughlin, M., Hershey, D. M., Reyes Ruiz, L. M., Fiebig, A., & Crosson, S. (2022). A cryptic transcription factor regulates Caulobacter adhesin development. PLoS Genetics, 18(10). https://doi.org/10.1371/journal.pgen.1010481
Mendeley helps you to discover research relevant for your work.