WIF1 prevents Wnt5A mediated LIMK/CFL phosphorylation and adherens junction disruption in human vascular endothelial cells

8Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Wnt5A is released by activated macrophages and elevated levels have been detected in sepsis patients with severe systemic inflammation. However, the signalling and functional effects of Wnt5A in the vascular endothelial cells (VEC) remained unclear. Recently, we showed that Wnt5A affects barrier function in human VEC through Ryk interaction. Wnt5A/Ryk signalling activates LIMK to inactivate the actin depolymerisation factor CFL by phosphorylation, promotes actin polymerisation and disrupts endothelial adherens junctions. Findings: Here, we investigate the antagonistic effect of the Ryk specific secreted Wnt antagonist Wnt inhibitory factor (WIF)-1 on Wnt5A-mediated activation/inactivation of LIMK/CFL, and adherens junction disruption in human VEC. In human coronary artery endothelial cells (HCAEC), treatment with Wnt5A enhanced the phosphorylation of LIMK and CFL that was significantly prevented by WIF1. The presence of WIF1 suppressed Wnt5A-mediated disruption of β-catenin and VE-cadherin adherens junctions in HCAEC, thereby preventing barrier dysfunction caused by Wnt5A. Conclusion: We conclude that WIF1 or molecules with similar properties could be potent tools for the prevention of vascular leakage due to Wnt5A-mediated actin cytoskeleton remodeling in diseases associated with systemic inflammation.

Cite

CITATION STYLE

APA

Skaria, T., Bachli, E., & Schoedon, G. (2017). WIF1 prevents Wnt5A mediated LIMK/CFL phosphorylation and adherens junction disruption in human vascular endothelial cells. Journal of Inflammation (United Kingdom), 14(1). https://doi.org/10.1186/s12950-017-0157-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free