Site-specific unmodeled error mitigation for GNSS positioning in urban environments using a real-time adaptive weighting model

41Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

In Global Navigation Satellite System (GNSS) positioning, observation precisions are frequently impacted by the site-specific unmodeled errors, especially for the code observations that are widely used by smart phones and vehicles in urban environments. The site-specific unmodeled errors mainly refer to themultipath and other space loss caused by the signal propagation (e.g., non-line-of-sight reception). As usual, the observation precisions are estimated by the weighting function in a stochastic model. Only once the realistic weighting function is applied can we obtain the precise positioning results. Unfortunately, the existing weighting schemes do not fully take these site-specific unmodeled effects into account. Specifically, the traditional weighting models indirectly and partly reflect, or even simply ignore, these unmodeled effects. In this paper, we propose a real-time adaptive weighting model to mitigate the site-specific unmodeled errors of code observations. This unmodeled-error-weighted model takes full advantages of satellite elevation angle and carrier-to-noise power density ratio (C/N0). In detail, elevation is taken as a fundamental part of the proposed model, then C/N0 is applied to estimate the precision of site-specific unmodeled errors. The principle of the second part is that the measured C/N0 will deviate from the nominal values when the signal distortions are severe. Specifically, the template functions of C/N0 and its precision, which can estimate the nominal values, are applied to adaptively adjust the precision of site-specific unmodeled errors. The proposed method is tested in single-point positioning (SPP) and code real-time differenced (RTD) positioning by static and kinematic datasets. Results indicate that the adaptive model is superior to the equal-weight, elevation and C/N0 models. Compared with these traditional approaches, the accuracy of SPP and RTD solutions are improved by 35.1% and 17.6% on average in the dense high-rise building group, as well as 11.4% and 11.9% on average in the urban-forested area. This demonstrates the benefit to code-based positioning brought by a real-time adaptive weighting model as it can mitigate the impacts of site-specific unmodeled errors and improve the positioning accuracy.

Cite

CITATION STYLE

APA

Zhang, Z., Li, B., Shen, Y., Gao, Y., & Wang, M. (2018). Site-specific unmodeled error mitigation for GNSS positioning in urban environments using a real-time adaptive weighting model. Remote Sensing, 10(7). https://doi.org/10.3390/rs10071157

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free