Classification is a systematic grouping of objects into certain groups based on the same characteristics. The classification method used in this research are naive Bayes and K-Nearest Neighbor which has a relatively high degree of accuracy. This research aims to compare the level of classification accuracy on the status data of value-added tax (VAT) payment. The data used is data on corporate taxpayers at Samarinda Ulu Tax Office in 2018 with the status of VAT payment being compliant or non-compliant and used 3 independent variables are income, type of business entity and tax reported status. Measurement of accuracy using APER in the Naive Bayes method is 17.07% and in K-Nearest Neighbor method is 19,51%. The comparison results of accuracy measurements between the two methods show that the naive Bayes method has a higher level of accuracy than the K-Nearest Neighbor method
CITATION STYLE
Rahmaulidyah, F. N., Hayati, M. N., & Goejantoro, R. (2021). Perbandingan Metode Klasifikasi Naive Bayes dan K-Nearest Neighbor pada Data Status Pembayaran Pajak Pertambahan Nilai di Kantor Pelayanan Pajak Pratama Samarinda Ulu. EKSPONENSIAL, 12(2), 161. https://doi.org/10.30872/eksponensial.v12i2.809
Mendeley helps you to discover research relevant for your work.