To contribute to the understanding of the influence of climate on glacial erosion and on orogenic processes, we report contemporary glacial erosion rates from a calving glacier in the Southern Andes and elucidate the influence of ice dynamics on erosion. Using seismic profiles of sediments collected in a proglacial fjord and a documented history of retreat, we determine the time-varying sediment flux of Glaciar Marinelli as a measure of basin-wide erosion rates, and compare these rates with the annual ice budget reconstructed using NCEP-NCAR reanalysis climate data from 1950 to 2005. The rate of erosion of the largest tidewater glacier in Tierra del Fuego averaged 39 ± 16 mm a-1 during the latter half of the 20th century, with an annual maximum approaching 130 mm a-1 following a decade of rapid retreat. A strong correlation emerges between the variable rate of ice delivery to the terminus and the erosion rate, providing quantitative insight into the relationship between ice fluxes and glacial erosion rates. For Glaciar Marinelli, as for other calving glaciers for which suitable data exist, the marked retreat and thinning over the past 50 years have resulted in a period of accelerated basal sliding and unusually rapid erosion.
CITATION STYLE
Koppes, M., Hallet, B., & Anderson, J. (2009). Synchronous acceleration of ice loss and glacial erosion, Glaciar Marinelli, chilean Tierra del Fuego. Journal of Glaciology, 55(190), 207–220. https://doi.org/10.3189/002214309788608796
Mendeley helps you to discover research relevant for your work.